- “显著性”(Saliency)是计算机视觉中的一个重要概念,主要指的是图像或视频中最吸引人注意力的区域或对象
步步咏凉天
计算机视觉人工智能
“显著性”(Saliency)是计算机视觉中的一个重要概念,主要指的是图像或视频中最吸引人注意力的区域或对象。它模拟的是人类视觉系统对视觉场景中“显著”区域的感知能力。显著性可以用于图像理解、目标检测、图像压缩、图像分割等多个任务。下面是对显著性在计算机视觉中的几个关键方面的解释:一、显著性检测(SaliencyDetection)显著性检测的目标是预测图像中最能吸引人注意的区域,通常输出一个与输
- PillarNet: Real-Time and High-PerformancePillar-based 3D Object Detection
justtoomuchforyou
目标检测人工智能计算机视觉智驾
ECCV2022paper:[2205.07403]PillarNet:Real-TimeandHigh-PerformancePillar-based3DObjectDetectioncode:https://github.com/VISION-SJTU/PillarNet-LTS纯点云基于pillar3D检测模型网络比较SECOND基于voxel,one-stage,基于sparse3Dc
- 2022-2023 ICCV、ECCV、CVPR关于有感自动驾驶的论文
木寒夏
自动驾驶人工智能机器学习
2022-2023ICCV、ECCV、CVPR关于有感自动驾驶的论文1全景分割【ECCV2022】|4D-STOP:基于时空对象方案生成和聚合的4DLiDAR全景分割|4D-StOP:PanopticSegmentationof4DLiDARUsingSpatio-TemporalObjectProposalGenerationandAggregation|论文链接|代码链接【ECCV2022】|
- locotrack:实时点追踪的高效模型
羿舟芹
locotrack:实时点追踪的高效模型locotrackOfficialimplementationof"LocalAll-PairCorrespondenceforPointTracking"(ECCV2024)项目地址:https://gitcode.com/gh_mirrors/lo/locotrack项目介绍locotrack是一种基于局部全对对应关系的高效点追踪模型。它能够在实时视频中
- YOLO3D-YOLOv4-PyTorch:实时3D目标检测的革命性开源项目
倪俊炼
YOLO3D-YOLOv4-PyTorch:实时3D目标检测的革命性开源项目YOLO3D-YOLOv4-PyTorchYOLO3D:End-to-endreal-time3DOrientedObjectBoundingBoxDetectionfromLiDARPointCloud(ECCV2018)项目地址:https://gitcode.com/gh_mirrors/yo/YOLO3D-YOLO
- 探索文档理解的革命性方法:Donut
钟日瑜
探索文档理解的革命性方法:DonutdonutOfficialImplementationofOCR-freeDocumentUnderstandingTransformer(Donut)andSyntheticDocumentGenerator(SynthDoG),ECCV2022项目地址:https://gitcode.com/gh_mirrors/do/donut在数字化时代,文档处理和理解
- 看了上百篇YOLO的论文,发现这些才是它发文的捷径!
深度学习机器学习
YOLO深度学习深度学习计算机视觉人工智能YOLO机器学习论文笔记论文
二区及以上,YOLO依然是发文香饽饽!不说别的,就ECCV2024就收录了不少,更是出现了满分文章:SpikeYOL!主要在于:一方面,近来涌现了不少新技术,给领域的发展带来了新的机会。通过与Mamba结合,诸多模型取得了性能的飞跃!另一方面,相比其他模型,它不仅简单而且性能好,小白好上手。且开源代码多,魔改方便。此外,其涉及的应用场景也非常丰富,结合不同的场景和数据集,便能有创新的机会!目前主流
- 配置MambaIRv2: Attentive State Space Restoration的环境
YuSun_WK
python开发语言
github上代码的地址:csguoh/MambaIR:[ECCV2024,CVPR2025]MambaIRandMambaIRv2!一开始直接输入命令condaenvcreate-fenvironment.yaml安装了半天爆出来好几个错误,其中一个是没有nvcc输入以下命令:moduleavail发现没有对应的cuda11.7的版本就安装cuda11.7的然后输入以下命令激活环境:source
- 顶会、顶刊
程序员爱德华
深度学习顶级会议顶级期刊计算机论文
文章目录零、概念1.什么是会议和期刊?(1)会议(2)期刊(3)期刊与会议的比较:会议>期刊2.什么是CCF分级一、顶级会议(一)计算机视觉领域1.CVPR(国际计算机视觉与模式识别会议)2.ICCV(国际计算机视觉大会)3.ECCV(欧洲计算机视觉国际会议)4.ICIP5.ICPR6.ACCV(二)机器学习领域1.NeurIPS2.ICLR:表征学习3.ICML(三)人工智能领域1.AAAI2.
- YOLOv11改进 | 注意力篇 | YOLOv11引入24年ECCV的自调制特征聚合注意力模块(SMFA),并构建C2PSA_SMFA
小李学AI
YOLOv11有效涨点专栏YOLO深度学习人工智能计算机视觉目标检测机器学习神经网络
1.SMFA介绍1.1摘要:基于Transformer的图像复原方法由于Transformer的自注意(self-attention,SA)特性能够更好地挖掘非局部信息,从而获得更好的高分辨率图像重建效果,因此具有重要的应用价值。然而,关键点积SA需要大量的计算资源,这限制了其在低功耗器件中的应用。此外,模拟退火机制的低通特性限制了其捕获局部细节的能力,从而导致平滑的重建结果。针对该问题,该文提出
- 3d虚拟试衣 VTON 2025
AI算法网奇
aigc与数字人人工智能计算机视觉
目录3D虚拟试衣VTON2025vton360IdmvtonCatVTON3D虚拟试衣VTON2025vton360GitHub-scnuhealthy/VTON360IdmvtonGitHub-yisol/IDM-VTON:[ECCV2024]IDM-VTON:ImprovingDiffusionModelsforAuthenticVirtualTry-onintheWildCatVTONden
- (ECCV2018)CBAM改进思路
这张生成的图像能检测吗
即插即用模块+改进思路深度学习人工智能计算机视觉机器学习图像处理神经网络论文笔记
论文链接:https://arxiv.org/abs/1807.06521论文题目:CBAM:ConvolutionalBlockAttentionModule会议:ECCV2018论文方法利用特征的通道间关系生成了一个通道注意图。由于特征映射的每个通道被认为是一个特征检测器,通道注意力集中在给定输入图像的“什么”是有意义的。为了有效地计算通道注意力,我们压缩了输入特征映射的空间维度。对于空间信息
- ECCV2024|底层视觉(超分辨率,图像恢复,去雨,去雾,去模糊,去噪等)相关论文汇总(附论文链接/开源代码)【持续更新】
Kobaayyy
论文相关图像处理与计算机视觉底层视觉算法计算机视觉ECCV2024图像超分图像复原图像增强
ECCV2024|底层视觉相关论文汇总(如果觉得有帮助,欢迎点赞和收藏)相关整理(RelatedCollections)**参考或转载请注明出处**1.超分辨率(Super-Resolution)AcceleratingImageSuper-ResolutionNetworkswithPixel-LevelClassificationAdaDiffSR:AdaptiveRegion-awareDy
- [Github推荐]CVPR2019录用论文下载及可视化论文网站
spearhead_cai
计算机视觉深度学习科研论文CVPRGithub计算机视觉深度学习
简介CVPR是IEEEConferenceonComputerVisionandPatternRecognition的缩写,即IEEE国际计算机视觉与模式识别会议。该会议是由IEEE举办的计算机视觉和模式识别领域的顶级会议。它是IEEE一年一度的学术性会议,会议的主要内容是计算机视觉与模式识别技术。CVPR是世界顶级的计算机视觉会议(三大顶会之一,另外两个是ICCV和ECCV),本会议每年都会有固
- End-to-End Object Detection with Transformers
M1kk0
目标检测计算机视觉神经网络
End-to-EndObjectDetectionwithTransformers会议:2020ECCV论文:https://arxiv.org/abs/2005.12872代码:https://github.com/facebookresearch/detr创新点:\作者摒弃了基于anchor、NMS等这种需要手工设计的模块,和R-CNN系列、YOLO系列,以及其他anchor-free的方法都
- MobileNetV4(2024 ECCV)
刘若里
论文阅读学习网络计算机视觉笔记
论文标题MobileNetV4:UniversalModelsfortheMobileEcosystem论文作者DanfengQin,ChasLeichner,ManolisDelakis,MarcoFornoni,ShixinLuo,FanYang,WeijunWang,ColbyBanbury,ChengxiYe,BerkinAkin,VaibhavAggarwal,TenghuiZhu,Da
- SalFAU-Net:显著性目标检测的显著性融合注意U-Net
明初啥都能学会
目标检测人工智能计算机视觉
SalFAU-Net:显著性目标检测的显著性融合注意U-Net摘要IntroductionRelatedWorksSalFAU-Net:SaliencyFusionAttentionU-NetforSalientObjectDetection摘要显著目标检测(SOD)在计算机视觉中仍然是一个重要的任务,其应用范围从图像分割到自动驾驶。基于全卷积网络(FCN)的方法在过去几十年里在视觉显著性检测方面
- 【学习笔记】昇思25天学习打卡(D14)CV05-SSD目标检测.ipynb
UnseenMe
昇思学习笔记目标检测
SSD目标检测模型简介SSD,全称SingleShotMultiBoxDetector,是WeiLiu在ECCV2016上提出的一种目标检测算法。使用NvidiaTitanX在VOC2007测试集上,SSD对于输入尺寸300x300的网络,达到74.3%mAP(meanAveragePrecision)以及59FPS;对于512x512的网络,达到了76.9%mAP,超越当时最强的FasterRC
- ECCV 2024 | CC-SAM:用于超声图像分割的跨特征注意力和上下文的SAM
小白学视觉
计算机顶会论文解读人工智能ccf-aECCV计算机顶会深度学习
论文信息题目:CC-SAM:SAMwithCross-featureAttentionandContextforUltrasoundImageSegmentationCC-SAM:用于超声图像分割的跨特征注意力和上下文的SAM作者:ShreyankNGowda和DavidA.Clifton论文创新点变分注意力融合模块(VariationalAttentionFusionModule):作者提出了一
- 【计算机视觉前沿研究 热点 顶会】ECCV 2024中目标检测有关的论文
平安顺遂事事如意
顶刊顶会论文合集计算机视觉目标检测人工智能3d目标跟踪
整值训练和尖峰驱动推理脉冲神经网络用于高性能和节能的目标检测与人工神经网络(ANN)相比,脑激励的脉冲神经网络(SNN)具有生物合理性和低功耗的优势。由于SNN的性能较差,目前的应用仅限于简单的分类任务。在这项工作中,我们专注于弥合人工神经网络和神经网络在目标检测方面的性能差距。我们的设计围绕着网络架构和尖峰神经元。当行人检测遇到多模态学习时:通才模型和基准数据集近年来,利用不同传感器模态(如RG
- 【计算机视觉前沿研究 热点 顶会】ECCV 2024中Mamba有关的论文
平安顺遂事事如意
顶刊顶会论文合集计算机视觉论文笔记目标跟踪ECCVMamba状态空间模型人工智能
MambaIR:状态空间模型图像恢复的简单基线近年来,图像恢复技术取得了长足的进步,这在很大程度上归功于现代深度神经网络的发展,如CNN和Transformers。然而,现有的修复骨干往往面临全局接受域和高效计算之间的两难困境,阻碍了它们在实践中的应用。最近,选择性结构化状态空间模型,特别是改进的Mamba模型,在线性复杂度的长程依赖建模方面显示出了巨大的潜力,为解决上述困境提供了一条途径。然而,
- Object Tracking
ZoneIan
计算机视觉人工智能
目录ECCV2022ECCV2020ICCV2023CVPR2023CVPR2022ECCV20221.(MOT、指标)MOTCOM:TheMulti-ObjectTrackingDatasetComplexityMetric2.(鱼数据集、声呐视频、MOT)TheCaltechFishCountingDataset:ABenchmarkforMultiple-ObjectTrackingandC
- ESRGAN:基于GAN的增强超分辨率方法(附代码解析)
PaperWeekly
作者丨左育莘学校丨西安电子科技大学研究方向丨计算机视觉之前看的文章里有提到GAN在图像修复时更容易得到符合视觉上效果更好的图像,所以也是看了一些结合GAN的图像修复工作。ESRGAN:EnhancedSuper-ResolutionGenerativeAdversarialNetworks发表于ECCV2018的Workshops,作者在SRGAN的基础上进行了改进,包括改进网络的结构、判决器的判
- 论文鉴赏:孙等人采用基于MR(Manifoldranking,流行排序)的视觉显著性目标检测方法对绿色苹果图像进行处理并生成显著图,然后通过形态学处理和边缘检测等操作实现了果实的识别。
神笔馬良
mr计算机视觉人工智能
问题描述:孙等人采用基于MR(Manifoldranking,流行排序)的视觉显著性目标检测方法对绿色苹果图像进行处理并生成显著图,然后通过形态学处理和边缘检测等操作实现了果实的识别。请问这句话中的流行排序是什么,原理是什么,干什么用的。显著图是什么结果,可以用来干什么?问题解答:"流行排序"(ManifoldRanking,简称MR)是一种用于图像处理和计算机视觉中的视觉显著性检测方法。它基于图
- ESRGAN:基于GAN的增强超分辨率方法(附代码解析)
无止境x
SuperResolution(超分辨)ESRGAN
之前看的文章里有提到GAN在图像修复时更容易得到符合视觉上效果更好的图像,所以也是看了一些结合GAN的图像修复工作。ESRGAN:EnhancedSuper-ResolutionGenerativeAdversarialNetworks发表于ECCV2018的Workshops,作者在SRGAN的基础上进行了改进,包括改进网络的结构、判决器的判决形式,以及更换了一个用于计算感知域损失的预训练网络。
- 时序动作定位|使用 ‘注意力机制’ 的弱监督时序动作定位顶会论文理解笔记(Weakly-Supervised Temporal Action Localization)
六个核桃Lu
视频动作定位深度学习人工智能神经网络机器学习计算机视觉
目录WeaklySupervisedActionLocalizationbySparseTemporalPoolingNetwork(CVPR2018)W-TALC:Weakly-supervisedTemporalActivityLocalizationandClassification(ECCV2018)
- ECCV 2022 | 基于数据转移的细粒度场景图生成
PaperWeekly
机器学习人工智能深度学习计算机视觉神经网络
©作者|张傲单位|新加坡国立大学研究方向|多模态学习宣传一下我们在ECCV2022Oral(2accept,1weakaccept)的论文“Fine-GrainedSceneGraphGenerationwithDataTransfer”!本回答主要内容包括对于SceneGraph现有问题的介绍(标题里的精神内耗),我们的方法。最后是关于场景图生成(SGG)领域的一些感受。论文链接:https:/
- BASNet:Boundary-aware salient object detection
Kun Li
应用算法目标检测计算机视觉
CVPR2019开源论文|BASNet:关注边界的显著性检测本文提出一种基于深度监督学习的前景提取构架BASNet,其在边缘感知上有优异的表现。https://mp.weixin.qq.com/s/fjq4UyDMN9Z9lvNZ7aNLWABASNet:Boundary-AwareSalientObjectDetection论文学习_basnet:boundary-awaresalientobj
- CVPR 2023 Universal Instance Perception as Object Discovery and Retrieval
万年枝
论文合集人工智能
文章目录背景摘要介绍贡献方法1.提示生成2.图像提示特征融合3.目标发现和检索训练推理结果展望相关IDOL|ECCV2022OFA作者:大连理工大学信息与通信工程学院,字节跳动,香港大学,鹏城实验室论文:https://arxiv.org/pdf/2303.17225.pdf代码在https://github.com/MasterBin-IIAU/UNINEXT中文名称:将统一实例感知任务作为目标
- 实现稳定的联合显著性检测和联合目标分割
umbrellazg
算法python
1TitleTowardStableCo-SaliencyDetectionandObjectCo-Segmentation(BoLi;LvTang;SenyunKuang;MofeiSong;ShouhongDing)【IEEETransactionsonImageProcessing2022】2ConclusionThispaperpresentanovelmodelforsimultaneo
- Java实现的简单双向Map,支持重复Value
superlxw1234
java双向map
关键字:Java双向Map、DualHashBidiMap
有个需求,需要根据即时修改Map结构中的Value值,比如,将Map中所有value=V1的记录改成value=V2,key保持不变。
数据量比较大,遍历Map性能太差,这就需要根据Value先找到Key,然后去修改。
即:既要根据Key找Value,又要根据Value
- PL/SQL触发器基础及例子
百合不是茶
oracle数据库触发器PL/SQL编程
触发器的简介;
触发器的定义就是说某个条件成立的时候,触发器里面所定义的语句就会被自动的执行。因此触发器不需要人为的去调用,也不能调用。触发器和过程函数类似 过程函数必须要调用,
一个表中最多只能有12个触发器类型的,触发器和过程函数相似 触发器不需要调用直接执行,
触发时间:指明触发器何时执行,该值可取:
before:表示在数据库动作之前触发
- [时空与探索]穿越时空的一些问题
comsci
问题
我们还没有进行过任何数学形式上的证明,仅仅是一个猜想.....
这个猜想就是; 任何有质量的物体(哪怕只有一微克)都不可能穿越时空,该物体强行穿越时空的时候,物体的质量会与时空粒子产生反应,物体会变成暗物质,也就是说,任何物体穿越时空会变成暗物质..(暗物质就我的理
- easy ui datagrid上移下移一行
商人shang
js上移下移easyuidatagrid
/**
* 向上移动一行
*
* @param dg
* @param row
*/
function moveupRow(dg, row) {
var datagrid = $(dg);
var index = datagrid.datagrid("getRowIndex", row);
if (isFirstRow(dg, row)) {
- Java反射
oloz
反射
本人菜鸟,今天恰好有时间,写写博客,总结复习一下java反射方面的知识,欢迎大家探讨交流学习指教
首先看看java中的Class
package demo;
public class ClassTest {
/*先了解java中的Class*/
public static void main(String[] args) {
//任何一个类都
- springMVC 使用JSR-303 Validation验证
杨白白
springmvc
JSR-303是一个数据验证的规范,但是spring并没有对其进行实现,Hibernate Validator是实现了这一规范的,通过此这个实现来讲SpringMVC对JSR-303的支持。
JSR-303的校验是基于注解的,首先要把这些注解标记在需要验证的实体类的属性上或是其对应的get方法上。
登录需要验证类
public class Login {
@NotEmpty
- log4j
香水浓
log4j
log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, HTML, DATABASE
#log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, ROLLINGFILE, HTML
#console
log4j.appender.STDOUT=org.apache.log4j.ConsoleAppender
log4
- 使用ajax和history.pushState无刷新改变页面URL
agevs
jquery框架Ajaxhtml5chrome
表现
如果你使用chrome或者firefox等浏览器访问本博客、github.com、plus.google.com等网站时,细心的你会发现页面之间的点击是通过ajax异步请求的,同时页面的URL发生了了改变。并且能够很好的支持浏览器前进和后退。
是什么有这么强大的功能呢?
HTML5里引用了新的API,history.pushState和history.replaceState,就是通过
- centos中文乱码
AILIKES
centosOSssh
一、CentOS系统访问 g.cn ,发现中文乱码。
于是用以前的方式:yum -y install fonts-chinese
CentOS系统安装后,还是不能显示中文字体。我使用 gedit 编辑源码,其中文注释也为乱码。
后来,终于找到以下方法可以解决,需要两个中文支持的包:
fonts-chinese-3.02-12.
- 触发器
baalwolf
触发器
触发器(trigger):监视某种情况,并触发某种操作。
触发器创建语法四要素:1.监视地点(table) 2.监视事件(insert/update/delete) 3.触发时间(after/before) 4.触发事件(insert/update/delete)
语法:
create trigger triggerName
after/before 
- JS正则表达式的i m g
bijian1013
JavaScript正则表达式
g:表示全局(global)模式,即模式将被应用于所有字符串,而非在发现第一个匹配项时立即停止。 i:表示不区分大小写(case-insensitive)模式,即在确定匹配项时忽略模式与字符串的大小写。 m:表示
- HTML5模式和Hashbang模式
bijian1013
JavaScriptAngularJSHashbang模式HTML5模式
我们可以用$locationProvider来配置$location服务(可以采用注入的方式,就像AngularJS中其他所有东西一样)。这里provider的两个参数很有意思,介绍如下。
html5Mode
一个布尔值,标识$location服务是否运行在HTML5模式下。
ha
- [Maven学习笔记六]Maven生命周期
bit1129
maven
从mvn test的输出开始说起
当我们在user-core中执行mvn test时,执行的输出如下:
/software/devsoftware/jdk1.7.0_55/bin/java -Dmaven.home=/software/devsoftware/apache-maven-3.2.1 -Dclassworlds.conf=/software/devs
- 【Hadoop七】基于Yarn的Hadoop Map Reduce容错
bit1129
hadoop
运行于Yarn的Map Reduce作业,可能发生失败的点包括
Task Failure
Application Master Failure
Node Manager Failure
Resource Manager Failure
1. Task Failure
任务执行过程中产生的异常和JVM的意外终止会汇报给Application Master。僵死的任务也会被A
- 记一次数据推送的异常解决端口解决
ronin47
记一次数据推送的异常解决
需求:从db获取数据然后推送到B
程序开发完成,上jboss,刚开始报了很多错,逐一解决,可最后显示连接不到数据库。机房的同事说可以ping 通。
自已画了个图,逐一排除,把linux 防火墙 和 setenforce 设置最低。
service iptables stop
- 巧用视错觉-UI更有趣
brotherlamp
UIui视频ui教程ui自学ui资料
我们每个人在生活中都曾感受过视错觉(optical illusion)的魅力。
视错觉现象是双眼跟我们开的一个玩笑,而我们往往还心甘情愿地接受我们看到的假象。其实不止如此,视觉错现象的背后还有一个重要的科学原理——格式塔原理。
格式塔原理解释了人们如何以视觉方式感觉物体,以及图像的结构,视角,大小等要素是如何影响我们的视觉的。
在下面这篇文章中,我们首先会简单介绍一下格式塔原理中的基本概念,
- 线段树-poj1177-N个矩形求边长(离散化+扫描线)
bylijinnan
数据结构算法线段树
package com.ljn.base;
import java.util.Arrays;
import java.util.Comparator;
import java.util.Set;
import java.util.TreeSet;
/**
* POJ 1177 (线段树+离散化+扫描线),题目链接为http://poj.org/problem?id=1177
- HTTP协议详解
chicony
http协议
引言
- Scala设计模式
chenchao051
设计模式scala
Scala设计模式
我的话: 在国外网站上看到一篇文章,里面详细描述了很多设计模式,并且用Java及Scala两种语言描述,清晰的让我们看到各种常规的设计模式,在Scala中是如何在语言特性层面直接支持的。基于文章很nice,我利用今天的空闲时间将其翻译,希望大家能一起学习,讨论。翻译
- 安装mysql
daizj
mysql安装
安装mysql
(1)删除linux上已经安装的mysql相关库信息。rpm -e xxxxxxx --nodeps (强制删除)
执行命令rpm -qa |grep mysql 检查是否删除干净
(2)执行命令 rpm -i MySQL-server-5.5.31-2.el
- HTTP状态码大全
dcj3sjt126com
http状态码
完整的 HTTP 1.1规范说明书来自于RFC 2616,你可以在http://www.talentdigger.cn/home/link.php?url=d3d3LnJmYy1lZGl0b3Iub3JnLw%3D%3D在线查阅。HTTP 1.1的状态码被标记为新特性,因为许多浏览器只支持 HTTP 1.0。你应只把状态码发送给支持 HTTP 1.1的客户端,支持协议版本可以通过调用request
- asihttprequest上传图片
dcj3sjt126com
ASIHTTPRequest
NSURL *url =@"yourURL";
ASIFormDataRequest*currentRequest =[ASIFormDataRequest requestWithURL:url];
[currentRequest setPostFormat:ASIMultipartFormDataPostFormat];[currentRequest se
- C语言中,关键字static的作用
e200702084
C++cC#
在C语言中,关键字static有三个明显的作用:
1)在函数体,局部的static变量。生存期为程序的整个生命周期,(它存活多长时间);作用域却在函数体内(它在什么地方能被访问(空间))。
一个被声明为静态的变量在这一函数被调用过程中维持其值不变。因为它分配在静态存储区,函数调用结束后并不释放单元,但是在其它的作用域的无法访问。当再次调用这个函数时,这个局部的静态变量还存活,而且用在它的访
- win7/8使用curl
geeksun
win7
1. WIN7/8下要使用curl,需要下载curl-7.20.0-win64-ssl-sspi.zip和Win64OpenSSL_Light-1_0_2d.exe。 下载地址:
http://curl.haxx.se/download.html 请选择不带SSL的版本,否则还需要安装SSL的支持包 2. 可以给Windows增加c
- Creating a Shared Repository; Users Sharing The Repository
hongtoushizi
git
转载自:
http://www.gitguys.com/topics/creating-a-shared-repository-users-sharing-the-repository/ Commands discussed in this section:
git init –bare
git clone
git remote
git pull
git p
- Java实现字符串反转的8种或9种方法
Josh_Persistence
异或反转递归反转二分交换反转java字符串反转栈反转
注:对于第7种使用异或的方式来实现字符串的反转,如果不太看得明白的,可以参照另一篇博客:
http://josh-persistence.iteye.com/blog/2205768
/**
*
*/
package com.wsheng.aggregator.algorithm.string;
import java.util.Stack;
/**
- 代码实现任意容量倒水问题
home198979
PHP算法倒水
形象化设计模式实战 HELLO!架构 redis命令源码解析
倒水问题:有两个杯子,一个A升,一个B升,水有无限多,现要求利用这两杯子装C
- Druid datasource
zhb8015
druid
推荐大家使用数据库连接池 DruidDataSource. http://code.alibabatech.com/wiki/display/Druid/DruidDataSource DruidDataSource经过阿里巴巴数百个应用一年多生产环境运行验证,稳定可靠。 它最重要的特点是:监控、扩展和性能。 下载和Maven配置看这里: http
- 两种启动监听器ApplicationListener和ServletContextListener
spjich
javaspring框架
引言:有时候需要在项目初始化的时候进行一系列工作,比如初始化一个线程池,初始化配置文件,初始化缓存等等,这时候就需要用到启动监听器,下面分别介绍一下两种常用的项目启动监听器
ServletContextListener
特点: 依赖于sevlet容器,需要配置web.xml
使用方法:
public class StartListener implements
- JavaScript Rounding Methods of the Math object
何不笑
JavaScriptMath
The next group of methods has to do with rounding decimal values into integers. Three methods — Math.ceil(), Math.floor(), and Math.round() — handle rounding in differen