- 模拟退火(SA):如何“故意走错路”,才能找到最优解?
小瑞瑞acd
小瑞瑞学数模模拟退火算法python启发式算法算法
模拟退火(SA):如何“故意走错路”,才能找到最优解?图示模拟退火算法如何通过接受较差解(橙色虚线标注)从局部最优(绿色点)逃逸,最终找到全局最优解(紫色点),展示其跳出局部极小值的能力。大家好,我是小瑞瑞!欢迎回到我的专栏!想象一下,你站在一座连绵不绝的山脉中,目标是找到海拔最低的那个山谷。你手上只有一个高度计,视野被浓雾笼罩,只能看清脚下的一小片区域。如果你是一个“贪心”的登山者,你的策略会非
- AI编译器-算法篇(1)遗传算法GA
hush_coder
AI编译器-算法篇c++人工智能开发语言算法
AI编译器-算法篇(1)遗传算法GA目录AI编译器-算法篇(1)遗传算法GA目录摘要前言目前问题简述什么是GA核心流程1.初始化种群2.适应度评估3.选择(Selection)4.交叉(Crossover)5.变异(Mutation)6.终止条件7.主流程离散优化问题定义在混合精度优化中未来的方向GA的变种多目标遗传算法NSGA-II与其他结合模拟退火SA禁忌搜索TS社区分层搜索HiFRTuner
- Python day15
@浙大疏锦行Pythonday15.内容:复习日本周主要的内容是一些常见的机器学习流程以及其中的部分内容标签编码以及连续特征的处理:归一化和正态化等。图像的绘制:热力图、Shap图等的绘制超参数优化算法:网格搜索、贝叶斯以及启发式算法模拟退火、遗传算法等不平衡数据集的处理:过采样以及欠采样。
- MATLAB 优化类算法的改进方向探索及仿真对比分析
鱼弦
人工智能时代算法matlab人工智能
MATLAB优化类算法的改进方向探索及仿真对比分析一、概述优化算法是解决复杂问题的有效工具,在工程设计、机器学习、数据分析等领域有着广泛应用。本文将探讨MATLAB中优化类算法的改进方向,并进行仿真对比分析,包括遗传算法、粒子群算法、模拟退火算法等。二、优化算法简介1.遗传算法(GA)原理:模拟生物进化过程,通过选择、交叉、变异等操作寻找最优解。优点:全局搜索能力强:能够跳出局部最优解。并行计算能
- 【Python打卡Day12】启发式算法 @浙大疏锦行
可能是猫猫人
Python打卡训练营内容启发式算法算法
今天学习遗传算法,在以后的论文写作中可以水一节,胆子大的人才可以水一章这些算法仅作为你的了解,不需要开始学习,如果以后需要在论文中用到,在针对性的了解下处理逻辑。下面介绍这几种常见的优化算法遗传算法粒子群优化模拟退火##1.数据处理+划分训练和测试importpandasaspdimportpandasaspd#用于数据处理和分析,可处理表格数据。importnumpyasnp#用于数值计算,提供
- bzoj 5168:[HAOI2014]贴海报 题解
Unlimied
分块bzoj---其他------OJ---题解bzojHAOI分块
5168:[HAOI2014]贴海报DescriptionBytetown城市要进行市长竞选,所有的选民可以畅所欲言地对竞选市长的候选人发表言论。为了统一管理,城市委员会为选民准备了一个张贴海报的electoral墙。张贴规则如下:1.electoral墙是一个长度为N个单位的长方形,每个单位记为一个格子;2.所有张贴的海报的高度必须与electoral墙的高度一致的;3.每张海报以“AB”表示,
- python画龙舟_BZOJ4891 TJOI2017龙舟(Polllard-Rho)
weixin_39688750
python画龙舟
对给定模数分解质因数后约分即可。依然常数巨大过不了。#include#include#include#include#include#includeusingnamespacestd;#definelllonglong#defineN10010chargetc(){charc=getchar();while((c'Z')&&(c'z')&&(c''))c=getchar();returnc;}ll
- Python 模拟退火算法
神仙别闹
Python教程模拟退火算法算法
模拟退火算法借鉴了统计物理学的思想,是一种简单、通用的启发式优化算法,并在理论上具有概率性全局优化性能,因而在科研和工程中得到了广泛的应用。退火是金属从熔融状态缓慢冷却、最终达到能量最低的平衡态的过程。模拟退火算法基于优化问题求解过程与金属退火过程的相似性,以优化目标为能量函数,以解空间为状态空间,以随机扰动模拟粒子的热运动来求解优化问题。模拟退火算法结构简单,由温度更新函数、状态产生函数、状态接
- Python实现模拟退火算法
qq_39605374
模拟退火算法算法机器学习python
Python实现模拟退火算法模拟退火算法(simulatedannealing)是一种常用的优化算法。它通过在搜索过程中逐渐降低温度的方式来避免陷入局部最优解,并最终找到全局最优解。本文将介绍如何使用Python实现模拟退火算法,并给出完整源码。一、算法思路模拟退火算法的基本思路是从一个初始解开始,按照一定的概率接受较差的解,在接受较差解的同时,随机扰动当前解,继续搜索。在搜索过程中,算法会逐渐降
- python学智能算法(一)|模拟退火算法:原理解释和最小值求解
西猫雷婶
人工智能python学习笔记模拟退火算法算法机器学习
【1】引言python具备强大的数据处理功能,但数据处理往往需要结合智能算法,本次文章就学习用python仿真模拟退火算法。【2】模拟退火算法模拟退火算法本质和其名称一样,以金属材料热处理的退火过程为模拟对象,模拟退火过程中的物理变化规律来处理数据。当温度较高时,金属材料内的粒子具有较高的自由运动能量;随着温度降低,粒子的自由运动能量逐渐降低;完全冷却后,粒子没有自由运动能量,材料的性能达到稳定。
- Python33 智能优化算法之粒子群算法PSO
智能建造研究生
智能优化算法AI算法的Python实现python学习算法机器学习人工智能
智能优化算法是一类受自然界生物、物理、化学等现象启发而设计的优化算法,具备全局搜索能力,能够在复杂、多峰的搜索空间中找到近似全局最优解,常用于解决各种实际中的复杂优化问题。典型的智能优化算法包括遗传算法、粒子群优化、蚁群算法、模拟退火等。1.主要的智能优化算法遗传算法(GeneticAlgorithm,GA):基于自然选择和遗传机制的优化算法,广泛用于各种优化问题。粒子群优化算法(Particle
- 模拟退火算法(Simulated Annealing,简称SA)
深度学习客
算法优化模拟退火算法算法机器学习人工智能深度学习数据挖掘
目录模拟退火算法的详解1.基本原理2.算法步骤2.1.初始化2.2.迭代搜索2.3.温度更新2.4.终止条件3.参数调整4.应用案例5.优势与局限性总结模拟退火算法的Python示例与解释1.导入所需的库2.定义问题参数和函数3.模拟退火算法实现4.使用模拟退火算法解决TSP问题5.结果可视化总结模拟退火算法的详解模拟退火算法(SimulatedAnnealing,简称SA)是一种用于解决优化问题
- Day 12 训练
Nina_717
python打卡训练营python
Day12训练1.遗传算法2.粒子群优化(ParticleSwarmOptimization,PSO)3.模拟退火(SimulatedAnnealing,SA)超参数调整专题21.三种启发式算法的示例代码:遗传算法、粒子群算法、退火算法2.学习优化算法的思路(避免浪费无效时间)作业:今天以自由探索的思路为主,尝试检索资料、视频、文档,用尽可能简短但是清晰的语言看是否能说清楚这三种算法每种算法的实现
- 60天Python训练 day12
only_only_you
python开发语言
常见的几种优化算法:遗传算法粒子群优化模拟退火核心思想:这些启发式算法都是优化器。你的目标是找到一组超参数,让你的机器学习模型在某个指标(比如验证集准确率)上表现最好。这个过程就像在一个复杂的地形(参数空间)上寻找最高峰(最佳性能)。启发式算法就是一群聪明的“探险家”,它们用不同的策略(模仿自然、物理现象等)来寻找这个最高峰,而不需要知道地形每一处的精确梯度(导数)。遗传算法灵感来源:生物进化,达
- DAY12 超参数调整专题2
m0_57278362
python学习python
三种启发式算法的示例代码:遗传算法、粒子群算法、退火算法模拟退火算法(SimulatedAnnealing)是一种受金属退火过程启发的全局优化算法,通过模拟降温过程中的热力学平衡来避免陷入局部最优。以下是其核心实现逻辑:1.算法核心思想允许以一定概率接受比当前解更差的解,随着温度降低逐渐减少这种概率,从而平衡全局探索(高温阶段)和局部收敛(低温阶段)。2.实现步骤(1)初始化参数初始温度(T):较
- 模拟退火,百炼成钢
CIb0la
方法论生活学习程序人生
我是学专业数学出身,数学里有一个课程叫做最优化求解。英文是Optimization,中文直翻是最优化。一般是设置一个初始条件,然后在一个连续函数上找到符合条件的最大值或者最小值,通常在数学上叫做最优解。有时候,初始条件本身并不收窄,甚至就是一个函数范围,这会导致解有也不确定,变为一个范围或者说是有一个方程解。这时候的解被称作容许集。对于无约束的优化问题,如果函数是二次可微的话,那么可以通过找到目标
- 【EDA】Placement(布局)
Mike_Zhg
布局
第四章:Placement(布局)在VLSI物理设计中,布局(Placement)的目标是确定电路中每个模块(或门)的位置,以最小化线长、时序延迟或功耗,同时满足面积和拥塞约束。第四章聚焦三种经典布局算法,涵盖递归划分、解析优化和模拟退火,以下是详细介绍:1.最小割布局(MincutPlacement)核心目标通过递归二分划分电路,每次切割最小化跨分区连接(割集),结合终端传播优化模块位置,减少全
- floyd matlab 无向图 最短路径 数学建模_在数学建模中常用的方法
李培智
floydmatlab无向图最短路径数学建模
在数学建模中常用的方法:类比法、二分法、量纲分析法、差分法、变分法、图论法、层次分析法、数据拟合法、回归分析法、数学规划(线性规划,非线性规划,整数规划,动态规划,目标规划)、机理分析、排队方法、对策方法、决策方法、模糊评判方法、时间序列方法、灰色理论方法、现代优化算法(禁忌搜索算法,模拟退火算法,遗传算法,神经网络)。用这些方法可以解下列一些模型:优化模型、微分方程模型、统计模型、概率模型、图论
- 【BZOJ】1419 Red is good
weixin_34129696
【算法】期望DP【题解】其实把状态表示出来就是很简单的期望DP。f[i][j]表示i张红牌,j张黑牌的期望。i=0时,f[0][j]=0。j=0时,f[i][0]=i。f[i][j]=max(0,i/(i+j)*(f[i-1][j]+1)+j/(i+j)*(f[i][j-1]-1))。直接使用期望定义式E(X)=Σpi*xi不四舍五入就是在后一位-5。空间限制必须用递推+滚动数组。#include
- 【BZOJ】1419 Red is Good
Pure_W
BZOJ
大意:桌面上有R张红牌和B张黑牌,随机打乱顺序后放在桌面上,开始一张一张地翻牌,翻到红牌得到1美元,黑牌则付出1美元。可以随时停止翻牌,在最优策略下平均能得到多少钱直接期望DPf[i][j]表示开一局i红j黑的游戏的期望收益,然后f[i][j]可以由f[i-1][j]和f[i][j-1]转移要滚动#include#include#definecintconstint&usingnamespaces
- BZOJ 1419: Red is good(期望DP)
AbEver
BZOJ期望&概率DP&记忆化搜索
题目描述权限传送门题解比较水的期望DP,但也让我悟到了一点关于期望的东西。题目描述得不可描述,看起来逼格很高。但平均就是期望,关键是最优策略这点。根据我幼稚的理解,期望是均值没错,但期望之所以叫期望是因为它在预知未来,当前这个状态期望的得分就是作出决策后未来能得到分数的均值。所以或许这就是期望DP的状态要倒过来推的原因吧。考虑f[i][j]为剩下i张红牌j张黑牌的在最优策略下的期望。根据我脚推的式
- 全国大学生数学建模竞赛历年赛题及优秀论文(链接见ping论)
爱建模的小鹿
算法回归matlab
在数学建模中常用的方法:类比法、二分法、量纲分析法、差分法、变分法、图论法、层次分析法、数据拟合法、回归分析法、数学规划(线性规划,非线性规划,整数规划,动态规划,目标规划)、机理分析、排队方法、对策方法、决策方法、模糊评判方法、时间序列方法、灰色理论方法、现代优化算法(禁忌搜索算法,模拟退火算法,遗传算法,神经网络)。用这些方法可以解下列一些模型:优化模型、微分方程模型、统计模型、概率模型、图论
- BZOJ 1639: [Usaco2007 Mar]Monthly Expense 月度开支【二分+贪心】
weixin_30367543
1639:[Usaco2007Mar]MonthlyExpense月度开支【题目描述】传送门【题解】二分答案,然后贪心check就可以了。代码如下#includeusingnamespacestd;intn,m,Ans,a[100005];boolcheck(intx){intSum=0,Now=1;for(inti=1;ix)return0;if(Sum+a[i]>1;L>1)if(check(
- BZOJ 1639: [Usaco2007 Mar]Monthly Expense 月度开支
AC_IS_DELIGHTFUL
BZOJsilverUSACO银组题二分答案
1639:[Usaco2007Mar]MonthlyExpense月度开支TimeLimit:5SecMemoryLimit:64MBSubmit:1052Solved:519[Submit][Status][Discuss]DescriptionFarmerJohn是一个令人惊讶的会计学天才,他已经明白了他可能会花光他的钱,这些钱本来是要维持农场每个月的正常运转的。他已经计算了他以后N(1#in
- 粒子群算法详解---ChatGPT4o作答
部分分式
算法人工智能机器学习
粒子群优化算法(ParticleSwarmOptimization,PSO)是一种基于群体智能的全局优化算法,灵感来源于鸟群觅食、鱼群游动等生物群体行为。PSO算法由Kennedy和Eberhart于1995年提出,它是一种模拟自然界群体智能的优化方法,具有良好的全局搜索能力和计算效率。PSO是启发式搜索算法中的一种,与遗传算法(GA)、模拟退火(SA)等其他优化方法一样,属于群体智能类算法(Sw
- 【三维装箱】遗传算法和模拟退火算法求解三维装箱优化问题(含空间利用率 重量利用率 综合利用率)【含Matlab源码 XYWH023期】
Matlab领域
Matlab优化求解(高阶版)matlab
Matlab领域博客之家博主简介:985研究生,Matlab领域科研开发者;个人主页:Matlab领域代码获取方式:CSDNMatlab领域—代码获取方式座右铭:路漫漫其修远兮,吾将上下而求索。更多Matlab优化求解仿真内容点击①Matlab优化求解(高阶版)②付费专栏Matlab优化求解(进阶版)③付费专栏Matlab优化求解(初级版)⛳️关注CSDNMatlab领域,更多资源等你来!!⛄一、
- 【Matlab】-- 基于MATLAB的美赛常用多种算法
电科_银尘
Matlab程序matlab算法数学建模
文章目录文章目录01内容概要02各种算法基本原理03部分代码04代码下载01内容概要本资料集合了多种数学建模和优化算法的常用代码资源,旨在为参与美国大学生数学建模竞赛(MCM/ICM,简称美赛)的参赛者提供实用的编程工具和算法实现。这些算法包括BP神经网络、CT图像重建、Floyd算法、Topsis算法、层次分析法、分支定界法、灰色预测、粒子群算法、模拟退火算法(特别适用于TSP和背包问题)、人口
- 量子边缘计算:当Wasm遇见量子退火机——解锁组合优化问题的终极加速方案
Eqwaak00
分布式系统设计实战量子计算python大数据自动化
一、引言:组合优化问题的挑战与机遇在物流调度、金融投资、芯片设计等领域,组合优化问题(CombinatorialOptimization)因其高复杂度和NP-Hard特性,一直是学术界和工业界的核心挑战。例如,一个包含100个城市的旅行商问题(TSP),其可能的路径组合高达1015510155种,即使用超级计算机也需要数年才能穷举所有解。传统启发式算法(如遗传算法、模拟退火)虽能提供近似解,但面对
- YOLOv11改进 | 注意力篇 | YOLOv11引入24年ECCV的自调制特征聚合注意力模块(SMFA),并构建C2PSA_SMFA
小李学AI
YOLOv11有效涨点专栏YOLO深度学习人工智能计算机视觉目标检测机器学习神经网络
1.SMFA介绍1.1摘要:基于Transformer的图像复原方法由于Transformer的自注意(self-attention,SA)特性能够更好地挖掘非局部信息,从而获得更好的高分辨率图像重建效果,因此具有重要的应用价值。然而,关键点积SA需要大量的计算资源,这限制了其在低功耗器件中的应用。此外,模拟退火机制的低通特性限制了其捕获局部细节的能力,从而导致平滑的重建结果。针对该问题,该文提出
- 群体智能优化算法-模拟退火优化算法(Simulated Annealing, SA,含Matlab源代码)
HR Zhou
算法模拟退火算法机器学习matlab群体智能优化优化人工智能
摘要模拟退火(SA)算法是一种基于物理退火过程的全局优化算法,其核心思想来源于热力学中的退火过程:将材料加热到高温后再缓慢冷却,使其分子结构趋于最低能量状态,从而获得稳定结构。SA算法利用Metropolis准则来决定接受新的解,以一定概率接受劣解,从而避免陷入局部最优。SA具有收敛速度快、计算复杂度低、适用于连续优化问题等特点,被广泛应用于组合优化、函数优化、神经网络训练等领域。算法介绍1.主要
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIPHPandroidlinux
╔-----------------------------------╗┆
- 各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
bozch
.net.net mvc
在.net mvc5中,在执行某一操作的时候,出现了如下错误:
各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
经查询当前的操作与错误内容无关,经过对错误信息的排查发现,事故出现在数据库迁移上。
回想过去: 在迁移之前已经对数据库进行了添加字段操作,再次进行迁移插入XXX字段的时候,就会提示如上错误。
&
- Java 对象大小的计算
e200702084
java
Java对象的大小
如何计算一个对象的大小呢?
 
- Mybatis Spring
171815164
mybatis
ApplicationContext ac = new ClassPathXmlApplicationContext("applicationContext.xml");
CustomerService userService = (CustomerService) ac.getBean("customerService");
Customer cust
- JVM 不稳定参数
g21121
jvm
-XX 参数被称为不稳定参数,之所以这么叫是因为此类参数的设置很容易引起JVM 性能上的差异,使JVM 存在极大的不稳定性。当然这是在非合理设置的前提下,如果此类参数设置合理讲大大提高JVM 的性能及稳定性。 可以说“不稳定参数”
- 用户自动登录网站
永夜-极光
用户
1.目标:实现用户登录后,再次登录就自动登录,无需用户名和密码
2.思路:将用户的信息保存为cookie
每次用户访问网站,通过filter拦截所有请求,在filter中读取所有的cookie,如果找到了保存登录信息的cookie,那么在cookie中读取登录信息,然后直接
- centos7 安装后失去win7的引导记录
程序员是怎么炼成的
操作系统
1.使用root身份(必须)打开 /boot/grub2/grub.cfg 2.找到 ### BEGIN /etc/grub.d/30_os-prober ### 在后面添加 menuentry "Windows 7 (loader) (on /dev/sda1)" { 
- Oracle 10g 官方中文安装帮助文档以及Oracle官方中文教程文档下载
aijuans
oracle
Oracle 10g 官方中文安装帮助文档下载:http://download.csdn.net/tag/Oracle%E4%B8%AD%E6%96%87API%EF%BC%8COracle%E4%B8%AD%E6%96%87%E6%96%87%E6%A1%A3%EF%BC%8Coracle%E5%AD%A6%E4%B9%A0%E6%96%87%E6%A1%A3 Oracle 10g 官方中文教程
- JavaEE开源快速开发平台G4Studio_V3.2发布了
無為子
AOPoraclemysqljavaeeG4Studio
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V3.2版本已经正式发布。大家可以通过如下地址下载。
访问G4Studio网站
http://www.g4it.org
G4Studio_V3.2版本变更日志
功能新增
(1).新增了系统右下角滑出提示窗口功能。
(2).新增了文件资源的Zip压缩和解压缩
- Oracle常用的单行函数应用技巧总结
百合不是茶
日期函数转换函数(核心)数字函数通用函数(核心)字符函数
单行函数; 字符函数,数字函数,日期函数,转换函数(核心),通用函数(核心)
一:字符函数:
.UPPER(字符串) 将字符串转为大写
.LOWER (字符串) 将字符串转为小写
.INITCAP(字符串) 将首字母大写
.LENGTH (字符串) 字符串的长度
.REPLACE(字符串,'A','_') 将字符串字符A转换成_
- Mockito异常测试实例
bijian1013
java单元测试mockito
Mockito异常测试实例:
package com.bijian.study;
import static org.mockito.Mockito.mock;
import static org.mockito.Mockito.when;
import org.junit.Assert;
import org.junit.Test;
import org.mockito.
- GA与量子恒道统计
Bill_chen
JavaScript浏览器百度Google防火墙
前一阵子,统计**网址时,Google Analytics(GA) 和量子恒道统计(也称量子统计),数据有较大的偏差,仔细找相关资料研究了下,总结如下:
为何GA和量子网站统计(量子统计前身为雅虎统计)结果不同?
首先:没有一种网站统计工具能保证百分之百的准确出现该问题可能有以下几个原因:(1)不同的统计分析系统的算法机制不同;(2)统计代码放置的位置和前后
- 【Linux命令三】Top命令
bit1129
linux命令
Linux的Top命令类似于Windows的任务管理器,可以查看当前系统的运行情况,包括CPU、内存的使用情况等。如下是一个Top命令的执行结果:
top - 21:22:04 up 1 day, 23:49, 1 user, load average: 1.10, 1.66, 1.99
Tasks: 202 total, 4 running, 198 sl
- spring四种依赖注入方式
白糖_
spring
平常的java开发中,程序员在某个类中需要依赖其它类的方法,则通常是new一个依赖类再调用类实例的方法,这种开发存在的问题是new的类实例不好统一管理,spring提出了依赖注入的思想,即依赖类不由程序员实例化,而是通过spring容器帮我们new指定实例并且将实例注入到需要该对象的类中。依赖注入的另一种说法是“控制反转”,通俗的理解是:平常我们new一个实例,这个实例的控制权是我
- angular.injector
boyitech
AngularJSAngularJS API
angular.injector
描述: 创建一个injector对象, 调用injector对象的方法可以获得angular的service, 或者用来做依赖注入. 使用方法: angular.injector(modules, [strictDi]) 参数详解: Param Type Details mod
- java-同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待
bylijinnan
Integer
public class PC {
/**
* 题目:生产者-消费者。
* 同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待。
*/
private static final Integer[] val=new Integer[10];
private static
- 使用Struts2.2.1配置
Chen.H
apachespringWebxmlstruts
Struts2.2.1 需要如下 jar包: commons-fileupload-1.2.1.jar commons-io-1.3.2.jar commons-logging-1.0.4.jar freemarker-2.3.16.jar javassist-3.7.ga.jar ognl-3.0.jar spring.jar
struts2-core-2.2.1.jar struts2-sp
- [职业与教育]青春之歌
comsci
教育
每个人都有自己的青春之歌............但是我要说的却不是青春...
大家如果在自己的职业生涯没有给自己以后创业留一点点机会,仅仅凭学历和人脉关系,是难以在竞争激烈的市场中生存下去的....
&nbs
- oracle连接(join)中使用using关键字
daizj
JOINoraclesqlusing
在oracle连接(join)中使用using关键字
34. View the Exhibit and examine the structure of the ORDERS and ORDER_ITEMS tables.
Evaluate the following SQL statement:
SELECT oi.order_id, product_id, order_date
FRO
- NIO示例
daysinsun
nio
NIO服务端代码:
public class NIOServer {
private Selector selector;
public void startServer(int port) throws IOException {
ServerSocketChannel serverChannel = ServerSocketChannel.open(
- C语言学习homework1
dcj3sjt126com
chomework
0、 课堂练习做完
1、使用sizeof计算出你所知道的所有的类型占用的空间。
int x;
sizeof(x);
sizeof(int);
# include <stdio.h>
int main(void)
{
int x1;
char x2;
double x3;
float x4;
printf(&quo
- select in order by , mysql排序
dcj3sjt126com
mysql
If i select like this:
SELECT id FROM users WHERE id IN(3,4,8,1);
This by default will select users in this order
1,3,4,8,
I would like to select them in the same order that i put IN() values so:
- 页面校验-新建项目
fanxiaolong
页面校验
$(document).ready(
function() {
var flag = true;
$('#changeform').submit(function() {
var projectScValNull = true;
var s ="";
var parent_id = $("#parent_id").v
- Ehcache(02)——ehcache.xml简介
234390216
ehcacheehcache.xml简介
ehcache.xml简介
ehcache.xml文件是用来定义Ehcache的配置信息的,更准确的来说它是定义CacheManager的配置信息的。根据之前我们在《Ehcache简介》一文中对CacheManager的介绍我们知道一切Ehcache的应用都是从CacheManager开始的。在不指定配置信
- junit 4.11中三个新功能
jackyrong
java
junit 4.11中两个新增的功能,首先是注解中可以参数化,比如
import static org.junit.Assert.assertEquals;
import java.util.Arrays;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.junit.runn
- 国外程序员爱用苹果Mac电脑的10大理由
php教程分享
windowsPHPunixMicrosoftperl
Mac 在国外很受欢迎,尤其是在 设计/web开发/IT 人员圈子里。普通用户喜欢 Mac 可以理解,毕竟 Mac 设计美观,简单好用,没有病毒。那么为什么专业人士也对 Mac 情有独钟呢?从个人使用经验来看我想有下面几个原因:
1、Mac OS X 是基于 Unix 的
这一点太重要了,尤其是对开发人员,至少对于我来说很重要,这意味着Unix 下一堆好用的工具都可以随手捡到。如果你是个 wi
- 位运算、异或的实际应用
wenjinglian
位运算
一. 位操作基础,用一张表描述位操作符的应用规则并详细解释。
二. 常用位操作小技巧,有判断奇偶、交换两数、变换符号、求绝对值。
三. 位操作与空间压缩,针对筛素数进行空间压缩。
&n
- weblogic部署项目出现的一些问题(持续补充中……)
Everyday都不同
weblogic部署失败
好吧,weblogic的问题确实……
问题一:
org.springframework.beans.factory.BeanDefinitionStoreException: Failed to read candidate component class: URL [zip:E:/weblogic/user_projects/domains/base_domain/serve
- tomcat7性能调优(01)
toknowme
tomcat7
Tomcat优化: 1、最大连接数最大线程等设置
<Connector port="8082" protocol="HTTP/1.1"
useBodyEncodingForURI="t
- PO VO DAO DTO BO TO概念与区别
xp9802
javaDAO设计模式bean领域模型
O/R Mapping 是 Object Relational Mapping(对象关系映射)的缩写。通俗点讲,就是将对象与关系数据库绑定,用对象来表示关系数据。在O/R Mapping的世界里,有两个基本的也是重要的东东需要了解,即VO,PO。
它们的关系应该是相互独立的,一个VO可以只是PO的部分,也可以是多个PO构成,同样也可以等同于一个PO(指的是他们的属性)。这样,PO独立出来,数据持