常见的几种优化算法:
核心思想:
# pip install deap -i https://pypi.tuna.tsinghua.edu.cn/simple
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
from sklearn.metrics import classification_report, confusion_matrix
import warnings
warnings.filterwarnings("ignore")
import time
from deap import base, creator, tools, algorithms # DEAP是一个用于遗传算法和进化计算的Python库
import random
import numpy as np
# --- 2. 遗传算法优化随机森林 ---
print("\n--- 2. 遗传算法优化随机森林 (训练集 -> 测试集) ---")
# 定义适应度函数和个体类型
creator.create("FitnessMax", base.Fitness, weights=(1.0,))
creator.create("Individual", list, fitness=creator.FitnessMax)
# 定义超参数范围
n_estimators_range = (50, 200)
max_depth_range = (10, 30)
min_samples_split_range = (2, 10)
min_samples_leaf_range = (1, 4)
# 初始化工具盒
toolbox = base.Toolbox()
# 定义基因生成器
toolbox.register("attr_n_estimators", random.randint, *n_estimators_range)
toolbox.register("attr_max_depth", random.randint, *max_depth_range)
toolbox.register("attr_min_samples_split", random.randint, *min_samples_split_range)
toolbox.register("attr_min_samples_leaf", random.randint, *min_samples_leaf_range)
# 定义个体生成器
toolbox.register("individual", tools.initCycle, creator.Individual,
(toolbox.attr_n_estimators, toolbox.attr_max_depth,
toolbox.attr_min_samples_split, toolbox.attr_min_samples_leaf), n=1)
# 定义种群生成器
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
# 定义评估函数
def evaluate(individual):
n_estimators, max_depth, min_samples_split, min_samples_leaf = individual
model = RandomForestClassifier(n_estimators=n_estimators,
max_depth=max_depth,
min_samples_split=min_samples_split,
min_samples_leaf=min_samples_leaf,
random_state=42)
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
return accuracy,
# 注册评估函数
toolbox.register("evaluate", evaluate)
# 注册遗传操作
toolbox.register("mate", tools.cxTwoPoint)
toolbox.register("mutate", tools.mutUniformInt, low=[n_estimators_range[0], max_depth_range[0],
min_samples_split_range[0], min_samples_leaf_range[0]],
up=[n_estimators_range[1], max_depth_range[1],
min_samples_split_range[1], min_samples_leaf_range[1]], indpb=0.1)
toolbox.register("select", tools.selTournament, tournsize=3)
# 初始化种群
pop = toolbox.population(n=20)
# 遗传算法参数
NGEN = 10
CXPB = 0.5
MUTPB = 0.2
start_time = time.time()
# 运行遗传算法
for gen in range(NGEN):
offspring = algorithms.varAnd(pop, toolbox, cxpb=CXPB, mutpb=MUTPB)
fits = toolbox.map(toolbox.evaluate, offspring)
for fit, ind in zip(fits, offspring):
ind.fitness.values = fit
pop = toolbox.select(offspring, k=len(pop))
end_time = time.time()
# 找到最优个体
best_ind = tools.selBest(pop, k=1)[0]
best_n_estimators, best_max_depth, best_min_samples_split, best_min_samples_leaf = best_ind
print(f"遗传算法优化耗时: {end_time - start_time:.4f} 秒")
print("最佳参数: ", {
'n_estimators': best_n_estimators,
'max_depth': best_max_depth,
'min_samples_split': best_min_samples_split,
'min_samples_leaf': best_min_samples_leaf
})
# 使用最佳参数的模型进行预测
best_model = RandomForestClassifier(n_estimators=best_n_estimators,
max_depth=best_max_depth,
min_samples_split=best_min_samples_split,
min_samples_leaf=best_min_samples_leaf,
random_state=42)
best_model.fit(X_train, y_train)
best_pred = best_model.predict(X_test)
print("\n遗传算法优化后的随机森林 在测试集上的分类报告:")
print(classification_report(y_test, best_pred))
print("遗传算法优化后的随机森林 在测试集上的混淆矩阵:")
print(confusion_matrix(y_test, best_pred))
粒子群方法的思想比较简单,所以甚至可以不调库自己实现。
print("\n--- 2. 粒子群优化算法优化随机森林 (训练集 -> 测试集) ---")
# 定义适应度函数,本质就是构建了一个函数实现 参数--> 评估指标的映射
def fitness_function(params):
n_estimators, max_depth, min_samples_split, min_samples_leaf = params # 序列解包,允许你将一个可迭代对象(如列表、元组、字符串等)中的元素依次赋值给多个变量。
model = RandomForestClassifier(n_estimators=int(n_estimators),
max_depth=int(max_depth),
min_samples_split=int(min_samples_split),
min_samples_leaf=int(min_samples_leaf),
random_state=42)
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
return accuracy
# 粒子群优化算法实现
def pso(num_particles, num_iterations, c1, c2, w, bounds): # 粒子群优化算法核心函数
# num_particles:粒子的数量,即算法中用于搜索最优解的个体数量。
# num_iterations:迭代次数,算法运行的最大循环次数。
# c1:认知学习因子,用于控制粒子向自身历史最佳位置移动的程度。
# c2:社会学习因子,用于控制粒子向全局最佳位置移动的程度。
# w:惯性权重,控制粒子的惯性,影响粒子在搜索空间中的移动速度和方向。
# bounds:超参数的取值范围,是一个包含多个元组的列表,每个元组表示一个超参数的最小值和最大值。
num_params = len(bounds)
particles = np.array([[random.uniform(bounds[i][0], bounds[i][1]) for i in range(num_params)] for _ in
range(num_particles)])
velocities = np.array([[0] * num_params for _ in range(num_particles)])
personal_best = particles.copy()
personal_best_fitness = np.array([fitness_function(p) for p in particles])
global_best_index = np.argmax(personal_best_fitness)
global_best = personal_best[global_best_index]
global_best_fitness = personal_best_fitness[global_best_index]
for _ in range(num_iterations):
r1 = np.array([[random.random() for _ in range(num_params)] for _ in range(num_particles)])
r2 = np.array([[random.random() for _ in range(num_params)] for _ in range(num_particles)])
velocities = w * velocities + c1 * r1 * (personal_best - particles) + c2 * r2 * (
global_best - particles)
particles = particles + velocities
for i in range(num_particles):
for j in range(num_params):
if particles[i][j] < bounds[j][0]:
particles[i][j] = bounds[j][0]
elif particles[i][j] > bounds[j][1]:
particles[i][j] = bounds[j][1]
fitness_values = np.array([fitness_function(p) for p in particles])
improved_indices = fitness_values > personal_best_fitness
personal_best[improved_indices] = particles[improved_indices]
personal_best_fitness[improved_indices] = fitness_values[improved_indices]
current_best_index = np.argmax(personal_best_fitness)
if personal_best_fitness[current_best_index] > global_best_fitness:
global_best = personal_best[current_best_index]
global_best_fitness = personal_best_fitness[current_best_index]
return global_best, global_best_fitness
# 超参数范围
bounds = [(50, 200), (10, 30), (2, 10), (1, 4)] # n_estimators, max_depth, min_samples_split, min_samples_leaf
# 粒子群优化算法参数
num_particles = 20
num_iterations = 10
c1 = 1.5
c2 = 1.5
w = 0.5
start_time = time.time()
best_params, best_fitness = pso(num_particles, num_iterations, c1, c2, w, bounds)
end_time = time.time()
print(f"粒子群优化算法优化耗时: {end_time - start_time:.4f} 秒")
print("最佳参数: ", {
'n_estimators': int(best_params[0]),
'max_depth': int(best_params[1]),
'min_samples_split': int(best_params[2]),
'min_samples_leaf': int(best_params[3])
})
# 使用最佳参数的模型进行预测
best_model = RandomForestClassifier(n_estimators=int(best_params[0]),
max_depth=int(best_params[1]),
min_samples_split=int(best_params[2]),
min_samples_leaf=int(best_params[3]),
random_state=42)
best_model.fit(X_train, y_train)
best_pred = best_model.predict(X_test)
print("\n粒子群优化算法优化后的随机森林 在测试集上的分类报告:")
print(classification_report(y_test, best_pred))
print("粒子群优化算法优化后的随机森林 在测试集上的混淆矩阵:")
print(confusion_matrix(y_test, best_pred))
print("\n--- 2. 模拟退火算法优化随机森林 (训练集 -> 测试集) ---")
# 定义适应度函数
def fitness_function(params):
n_estimators, max_depth, min_samples_split, min_samples_leaf = params
model = RandomForestClassifier(n_estimators=int(n_estimators),
max_depth=int(max_depth),
min_samples_split=int(min_samples_split),
min_samples_leaf=int(min_samples_leaf),
random_state=42)
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
return accuracy
# 模拟退火算法实现
def simulated_annealing(initial_solution, bounds, initial_temp, final_temp, alpha):
current_solution = initial_solution
current_fitness = fitness_function(current_solution)
best_solution = current_solution
best_fitness = current_fitness
temp = initial_temp
while temp > final_temp:
# 生成邻域解
neighbor_solution = []
for i in range(len(current_solution)):
new_val = current_solution[i] + random.uniform(-1, 1) * (bounds[i][1] - bounds[i][0]) * 0.1
new_val = max(bounds[i][0], min(bounds[i][1], new_val))
neighbor_solution.append(new_val)
neighbor_fitness = fitness_function(neighbor_solution)
delta_fitness = neighbor_fitness - current_fitness
if delta_fitness > 0 or random.random() < np.exp(delta_fitness / temp):
current_solution = neighbor_solution
current_fitness = neighbor_fitness
if current_fitness > best_fitness:
best_solution = current_solution
best_fitness = current_fitness
temp *= alpha
return best_solution, best_fitness
# 超参数范围
bounds = [(50, 200), (10, 30), (2, 10), (1, 4)] # n_estimators, max_depth, min_samples_split, min_samples_leaf
# 模拟退火算法参数
initial_temp = 100 # 初始温度
final_temp = 0.1 # 终止温度
alpha = 0.95 # 温度衰减系数
# 初始化初始解
initial_solution = [random.uniform(bounds[i][0], bounds[i][1]) for i in range(len(bounds))]
start_time = time.time()
best_params, best_fitness = simulated_annealing(initial_solution, bounds, initial_temp, final_temp, alpha)
end_time = time.time()
print(f"模拟退火算法优化耗时: {end_time - start_time:.4f} 秒")
print("最佳参数: ", {
'n_estimators': int(best_params[0]),
'max_depth': int(best_params[1]),
'min_samples_split': int(best_params[2]),
'min_samples_leaf': int(best_params[3])
})
# 使用最佳参数的模型进行预测
best_model = RandomForestClassifier(n_estimators=int(best_params[0]),
max_depth=int(best_params[1]),
min_samples_split=int(best_params[2]),
min_samples_leaf=int(best_params[3]),
random_state=42)
best_model.fit(X_train, y_train)
best_pred = best_model.predict(X_test)
print("\n模拟退火算法优化后的随机森林 在测试集上的分类报告:")
print(classification_report(y_test, best_pred))
print("模拟退火算法优化后的随机森林 在测试集上的混淆矩阵:")
print(confusion_matrix(y_test, best_pred))
@浙大疏锦行