- Python数据分析第一课:Anaconda的安装使用
二狗的编程之路
Python数据分析python数据分析开发语言
Python数据分析第一课:Anaconda的安装使用1.Anaconda是什么?Anaconda是一个便捷的获取包,并且对包和环境进行管理的虚拟环境工具,Anaconda包括了conda、Python在内的超过180多个包和依赖项简单来说,Anaconda是包管理器和环境管理器2.Anaconda从何而来?Anaconda包括了Python和conda,我们从这这两个部分来叙述PythonPyt
- 数据分析利器:Pandas数据处理实战指南
程序员Bears
Python全栈成长笔记数据分析pandas数据挖掘
一、Pandas简介:数据分析的瑞士军刀Pandas是Python数据分析的核心库,它提供了两种主要数据结构:Series:一维带标签数组DataFrame:二维表格型数据结构(类似Excel表格)importpandasaspd#创建示例DataFramedata={'姓名':['张三','李四','王五'],'年龄':[25,30,28],'城市':['北京','上海','广州']}df=pd
- 数据分析必备神器:Pandas入门实战指南(零基础也能起飞[特殊字符])
文章目录一、为什么Pandas是数据分析的神器?Pandas的三大超能力:二、5分钟极速上手(附实战代码)三、职场人必学的五个骚操作3.1数据清洗黑科技3.2多文件合并技巧3.3智能分组统计3.4时间序列分析3.5表格颜值改造四、避坑指南(血泪教训)4.1内存爆炸陷阱4.2索引混乱之谜4.3SettingWithCopy幽灵警告五、学习路线图(亲测有效)朋友们!!!今天咱们聊聊Python数据分析
- Python 数据分析课程学习总结:从理论到实践的进阶之路
作为一名大学生,在2024-2025学年下学期接触《Python数据分析》这门课程时,我对数据分析的认知还停留在“用Excel做简单统计”的层面。但经过一学期的学习,我不仅掌握了Python数据分析的核心工具,更培养了用数据思维解决问题的能力。以下是我从知识吸收、实践打磨到思维重塑的完整学习总结。一、工具学习:从陌生到熟悉的跨越(一)Pandas:数据处理的得力助手最开始接触Pandas的时候,感
- Python 数据分析与可视化:从基础到进阶的技术实现与优化策略
女码农的重启
python数据分析开发语言
数据分析与可视化是数据科学领域的核心技能,Python凭借其丰富的库生态和灵活的编程范式,成为该领域的首选工具。本文将系统讲解Python数据分析与可视化的技术栈实现,从基础操作到性能优化,结合实战场景提供可复用的解决方案。数据分析核心库技术解析Pandas数据处理引擎原理Pandas作为数据分析的基石,其核心优势在于基于NumPy的矢量运算和高效的内存管理。与Excel的单元格级操作不同,Pan
- Python数据分析:从入门到精通
引言在当今数据驱动的时代,数据分析已成为企业和组织做出明智决策的关键。Python作为一种强大的编程语言,因其简洁性和丰富的数据分析库而成为数据科学领域的首选工具。无论你是初学者还是有一定经验的数据分析师,本指南都将带你从入门到精通Python数据分析,掌握必备技能和最佳实践。数据分析的重要性与Python的角色数据分析涉及收集、处理和解释数据,以揭示模式、趋势和见解。它有助于解决复杂问题,优化业
- Python数据分析案例|从模拟数据到可视化:零售门店客流量差异分析全流程
1.依赖库导入importmatplotlib.pyplotaspltimportnumpyasnpimportpandasaspdfrommatplotlibimportfont_managerfromdatetimeimportdatetimematplotlib.pyplot:用于绘制图表。numpy:numpy:pandas:虽然代码中未font_manager:设置datetime:生成
- Python数据分析学习笔记:字符串统计
NIKEeri
pythonpandas字符串匹配python数据分析学习
一、题目来源KagglePandas-Exercise:SummaryFunctionsandMaps章节二、题目要求描述一瓶葡萄酒时,可用的词汇有限。哪种词出现频率更高:“tropical”还是“fruity”?统计description列中这两个词的出现次数。忽略大小写。三、我的思路(使用str.contains统计总次数)tropical_count=reviews['description
- python数据分析scipy库安装与使用
范哥来了
python数据分析scipy
安装scipy库scipy是一个用于科学计算的Python库,它依赖于numpy。如果你还没有安装scipy,可以使用以下命令来安装:pipinstallscipy或者,如果你使用的是Anaconda环境,可以通过conda来安装:condainstallscipy使用scipy库scipy提供了许多用于科学计算的功能,包括统计、优化、积分、线性代数等。下面是一些常见的用法示例。1.导入scipy
- Python,C++开发上市辅导方法与实操APP
Geeker-2025
pythonc++
#上市辅导方法与实操APP-Python与C++综合解决方案下面是一个完整的上市辅导方法与实操APP的实现方案,结合Python和C++的优势,涵盖金融建模、合规分析、流程管理等多个方面:```mermaidgraphTDA[上市辅导系统]-->B[核心引擎]A-->C[应用平台]B-->D[C++金融计算引擎]B-->E[Python数据分析]B-->F[合规检查系统]C-->G[Web管理平台
- 《python 数据分析 从入门到精通》读书笔记|了解数据分析|数据分析基础知识
《python数据分析从入门到精通》读书笔记第一章:了解数据分析1.1什么是数据分析数据分析是利用数学、统计学理论与实践相结合的科学统计分析方法,对Excel数据、数据库中的数据、收集的大量数据、网页抓取的数据进行分析,从中提取有价值的信息并形成结论进行展示的过程。数据分析实际上是通过数据的规律来解决业务问题,以帮助实际工作中的管理者做出判断和决策。数据分析包括以下几个主要内容:(1)现状分析:分
- 【python数据分析】数据建模之Kmeans聚类
斑点鱼 SpotFish
python数据建模聚类python数据分析
K-means聚类:最常用的机器学习聚类算法,且为典型的基于距离的聚类算法。K均值:基于原型的、划分的距离技术,它试图发现用户指定个数(K)的簇以欧式距离作为相似度测度Kmeans聚类案例分析:make_blobs聚类数据生成器#导入模块from sklearn.cluster import KMeansfromsklearn.datasetsimportmake_blobs#创建数据x,y_tr
- Python 数据分析与机器学习入门 (一):环境搭建与核心库概览
程序员阿超的博客
Pythonpython数据分析机器学习入门教程环境搭建AnacondaJupyterNotebook
Python数据分析与机器学习入门(一):环境搭建与核心库概览本文摘要本文是Python数据分析与机器学习入门系列的第一篇,专为初学者设计。文章首先阐明了Python在数据科学领域的优势,然后手把手指导读者如何使用Anaconda搭建一个无痛、专业的开发环境,并介绍了强大的交互式工具JupyterNotebook的基本操作。最后,简要概览了NumPy、Pandas、Scikit-learn等核心库
- 物流数据行业分析(包含完整代码和流程)------python数据分析师项目Anaconda
欲梦yhd
数据分析项目大数据condapython
一、引言数据分析流程为明确目的、获取数据、数据探索和预处理、分析数据、得出结论、验证结论、结果展现。物流业务中对数据进行深入挖掘和分析的过程,旨在提高运输效率、降低运输成本、提高客户满意度,以及提高公司的竞争力。本案例物流数据分析目的:a、配送服务是否存在问题b、是否存在尚有潜力的销售区域c、商品是否存在质量问题二、详细流程1、数据预处理(数据清洗)(1)数据导入使用panda库读取数据,编码方式
- Python 数据分析实践经验与学习心得
lzzy_sj_0999
python数据分析开发语言
在当今数据驱动的时代,Python以其丰富的库和便捷的语法,成为数据分析领域的首选语言。本文将结合实际案例,分享Python数据分析的学习心得与实践经验,涵盖数据读取、清洗、分析及可视化等关键环节,希望能为大家的学习和工作提供帮助。一、数据分析必备库介绍在Python数据分析中,有几个核心库是必须掌握的,它们就像我们手中的“神兵利器”,能够高效完成各种数据分析任务。Pandas:用于数据处理和分析
- 《Python数据分析与挖掘实战》Chapter8中医证型关联规则挖掘笔记
茫茫大地真干净
机器学习Python数据挖掘
最近在学习《Python数据分析与挖掘实战》中的案例,写写自己的心得。代码分为两大部分:1.读取数据并进行聚类分析2.应用Apriori关联规则挖掘规律1.聚类部分函数分析:defprogrammer_1():datafile="C:/Users/longming/Desktop/chapter8/data/data.xls"processedfile="C:/Users/longming/Des
- python数据分析张俊红_Python数据分析实战基础 | 初识Pandas
weixin_39678531
python数据分析张俊红
这是Python数据分析实战基础的第一篇内容,主要是和Pandas来个简单的邂逅。已经熟练掌握Pandas的同学,可以加快手速滑动浏览或者直接略过本文。01重要的前言这段时间和一些做数据分析的同学闲聊,我发现数据分析技能入门阶段存在一个普遍性的问题,很多凭着兴趣入坑的同学,都能够很快熟悉Python基础语法,然后不约而同的一头扎进《利用Python进行数据分析》这本经典之中,硬着头皮啃完之后,好像
- python数据分析第9天
雪球滚滚滚
数据分析python数据挖掘
python数据分析第9天电商网站用户/订单/活动数据分析项目商业模式B2B:商家对商家(企业卖家对企业买家),交易双方都是企业,最典型的案例就是阿里巴巴,汇聚了各行业的供应商,特点是订单量一般较大。B2C:商家对个人(企业卖家对个人买家),例如:唯品会,聚美优品。B2B2C:商家对商家对个人,例如:天猫、京东。C2C:个人(卖家)对个人(买家),例如:淘宝、人人车。O2O:线上(售卖)到线下(提
- Python数据处理三剑客:NumPy、Pandas和xarray全面详解
AI开发学习分享
python数据分析pythonnumpypandas
在Python数据分析领域,NumPy、Pandas和xarray是最核心的三个库。本文将详细介绍它们的功能、用法和区别,并提供大量实用代码示例。一、NumPy:科学计算基础库NumPy是Python科学计算的基础包,提供了高性能的多维数组对象和各种计算工具。1.1基本数组操作importnumpyasnp#创建数组arr1=np.array([1,2,3,4])#一维数组arr2=np.arra
- 100个Pandas练习题:从入门到精通的实战指南
陆骊咪Durwin
100个Pandas练习题:从入门到精通的实战指南100-pandas-puzzles100datapuzzlesforpandas,rangingfromshortandsimpletosupertricky(60%complete)项目地址:https://gitcode.com/gh_mirrors/10/100-pandas-puzzles前言Pandas作为Python数据分析的核心库,
- Python 数据分析与可视化实践与python数据分析绘图表的实现,和实际的完整案例
Q_ytsup5681
python数据分析开发语言plotlymatplotlib
本文链接:Python数据分析与可视化实践与python数据分析绘图表的实现,和实际的完整案例-CSDN博客学习Python数据可视化对于数据分析和数据科学领域是至关重要的,它有着许多作用,包括但不限于以下几个方面:1.数据理解与探索:可视化使得数据更加直观,通过图表和图形,可以更容易地观察数据的分布、趋势和模式。这有助于深入理解数据,识别异常值和发现潜在的关联性。2.决策支持:数据可视化为决策提
- python数据分析 期末测验,python数据分析基础题库
Leospanb87
python开发语言人工智能
大家好,小编来为大家解答以下问题,python数据分析与应用选择题答案,python数据分析与应用课后题,现在让我们一起来看看吧!文章目录一、选择题二、填空题三、判断题四、代码分析题五、程序题一、选择题1.sum(range(0,101)的结果是()A.5050B.5151C.0D.101A2.下面哪个不是python合法的标识符()A.int32B.70XLC.selfD.__name__B3.
- python数据分析与可视化
蓝宗林
python数据分析信息可视化
一、Python数据分析概述Python是一种解释型、交互式的编程语言,其设计理念强调代码的可读性和简洁性。Python的语法结构简单,支持面向对象、过程式和函数式三种编程范式,使得Python成为一种强大而灵活的编程语言。Python数据分析主要包括数据清洗、数据探索和数据可视化三个部分。数据清洗是数据分析的重要环节,主要是对数据进行预处理,包括缺失值处理、异常值处理、数据类型转换等。数据探索则
- Python数据分析与可视化理论知识
Python数据分析概述Python数据分析依赖的两个对象表格对象实现统计分析数据预处理Matplotlib数据可视化总结Python数据分析概述数据分析的概述数据分析:用适当的统计分析方法将收集来的大量数据进行分析,将他们加以汇总和理解并消化,以求最大化地开发数据的功能,发挥数据的作用。为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。数据分析的类别:描述性数据分析、探索性数据分析
- 3648766
天浊海
pythonpycharmsklearn
1.Python数据分析介绍及环境搭建1.1python数据分析简介【了解】1.1.1python做数据分析的优势可以独立完成数据分析的各种任务功能强大,有海量的开源包(pandas,numpy…)处理海量数据效率高开源免费1.1.2常用python数据分析开源库numpy:用于数组计算pandas:分析结构化数据的工具集series:类似一维数组的对象(一行数据或者一列数据)dataframe:
- Python数据分析的基本步骤
在焦虑的沙漠里种一棵树
python数据分析开发语言
数据分析的基本步骤(基于Python)一、引言在当今数字化时代,数据已成为企业、科研机构等组织的重要资产。有效地进行数据分析可以帮助我们从海量的数据中提取有价值的信息,从而支持决策制定、优化流程、发现趋势等。Python作为一种强大的编程语言,拥有丰富的数据分析库,如Pandas、NumPy、Matplotlib等,为数据分析工作提供了极大的便利。本文将详细阐述基于Python的数据分析基本步骤,
- Python数据分析从小白到高手--数据可视化分析
王国平
信息可视化python数据分析人工智能大数据数据挖掘开发语言
Python是一种功能强大的编程语言,也是一种流行的数据分析工具,其数据可视化能力也非常强大,本章我们将结合实际案例介绍Python的主要数据可视化库,包括Matplotlib、Pyecharts、Seaborn、Plotly、Altair、NetworkX等。7.1Matplotlib7.1.1Matplotlib库简介Matplotlib是Python中最流行的数据可视化库之一,基于Numpy
- 【无痛学Python】Pandas数据载入与预处理,看这一篇就够了!
Skrrapper
Pythonpythonpandas数据库
【Python数据分析】Pandas数据载入与预处理,看这一篇就够了!对于数据分析而言,数据大部分来源于外部数据,例如CSV文件、Excel文件以及数据库文件等等。我们要把各种格式的数据转换成Pandas可处理的Series和DataFrame数据格式,进行完数据分析与处理之后再重新存储到外部文件中,这就是Pandas的数据载入与预处理。数据载入其实对于读/写文件和存储文件来说,不同类型文件的函数
- Python 数据分析:NumPy 库的使用
小张在编程
python数据分析numpy
引言:为什么说NumPy是Python数据分析的“基石”?在Python数据分析领域,有这样一句话:“没有NumPy,就没有Pandas、Matplotlib和Scikit-learn”。作为Python科学计算的核心库,NumPy(NumericalPython)凭借高效的多维数组(ndarray)和向量化运算能力,成为了所有数据分析工具的底层支撑。无论是处理百万级别的销售数据,还是实现复杂的机
- python数据分析期末_Python数据分析期末作业
xander Sun
python数据分析期末
Python数据分析期末作业(50分)一、名称:国民经济核算季度数据分析可视化处理;二、需求:根据文件《国民经济核算季度数据.npz》提供的各年中每个季度的数据,完成如下操作处理:1、绘制直方图:(1)在一个画板中绘制2000年、2017年第一季度国民生产总值产业构成分布、行业构成分布直方图,其效果形式如下;(2)要求:?每个图形的标题、轴标签、刻度、图形颜色、柱形宽度与效果图中的完全一致;?在每
- 分享100个最新免费的高匿HTTP代理IP
mcj8089
代理IP代理服务器匿名代理免费代理IP最新代理IP
推荐两个代理IP网站:
1. 全网代理IP:http://proxy.goubanjia.com/
2. 敲代码免费IP:http://ip.qiaodm.com/
120.198.243.130:80,中国/广东省
58.251.78.71:8088,中国/广东省
183.207.228.22:83,中国/
- mysql高级特性之数据分区
annan211
java数据结构mongodb分区mysql
mysql高级特性
1 以存储引擎的角度分析,分区表和物理表没有区别。是按照一定的规则将数据分别存储的逻辑设计。器底层是由多个物理字表组成。
2 分区的原理
分区表由多个相关的底层表实现,这些底层表也是由句柄对象表示,所以我们可以直接访问各个分区。存储引擎管理分区的各个底层
表和管理普通表一样(所有底层表都必须使用相同的存储引擎),分区表的索引只是
- JS采用正则表达式简单获取URL地址栏参数
chiangfai
js地址栏参数获取
GetUrlParam:function GetUrlParam(param){
var reg = new RegExp("(^|&)"+ param +"=([^&]*)(&|$)");
var r = window.location.search.substr(1).match(reg);
if(r!=null
- 怎样将数据表拷贝到powerdesigner (本地数据库表)
Array_06
powerDesigner
==================================================
1、打开PowerDesigner12,在菜单中按照如下方式进行操作
file->Reverse Engineer->DataBase
点击后,弹出 New Physical Data Model 的对话框
2、在General选项卡中
Model name:模板名字,自
- logbackのhelloworld
飞翔的马甲
日志logback
一、概述
1.日志是啥?
当我是个逗比的时候我是这么理解的:log.debug()代替了system.out.print();
当我项目工作时,以为是一堆得.log文件。
这两天项目发布新版本,比较轻松,决定好好地研究下日志以及logback。
传送门1:日志的作用与方法:
http://www.infoq.com/cn/articles/why-and-how-log
上面的作
- 新浪微博爬虫模拟登陆
随意而生
新浪微博
转载自:http://hi.baidu.com/erliang20088/item/251db4b040b8ce58ba0e1235
近来由于毕设需要,重新修改了新浪微博爬虫废了不少劲,希望下边的总结能够帮助后来的同学们。
现行版的模拟登陆与以前相比,最大的改动在于cookie获取时候的模拟url的请求
- synchronized
香水浓
javathread
Java语言的关键字,可用来给对象和方法或者代码块加锁,当它锁定一个方法或者一个代码块的时候,同一时刻最多只有一个线程执行这段代码。当两个并发线程访问同一个对象object中的这个加锁同步代码块时,一个时间内只能有一个线程得到执行。另一个线程必须等待当前线程执行完这个代码块以后才能执行该代码块。然而,当一个线程访问object的一个加锁代码块时,另一个线程仍然
- maven 简单实用教程
AdyZhang
maven
1. Maven介绍 1.1. 简介 java编写的用于构建系统的自动化工具。目前版本是2.0.9,注意maven2和maven1有很大区别,阅读第三方文档时需要区分版本。 1.2. Maven资源 见官方网站;The 5 minute test,官方简易入门文档;Getting Started Tutorial,官方入门文档;Build Coo
- Android 通过 intent传值获得null
aijuans
android
我在通过intent 获得传递兑现过的时候报错,空指针,我是getMap方法进行传值,代码如下 1 2 3 4 5 6 7 8 9
public
void
getMap(View view){
Intent i =
- apache 做代理 报如下错误:The proxy server received an invalid response from an upstream
baalwolf
response
网站配置是apache+tomcat,tomcat没有报错,apache报错是:
The proxy server received an invalid response from an upstream server. The proxy server could not handle the request GET /. Reason: Error reading fr
- Tomcat6 内存和线程配置
BigBird2012
tomcat6
1、修改启动时内存参数、并指定JVM时区 (在windows server 2008 下时间少了8个小时)
在Tomcat上运行j2ee项目代码时,经常会出现内存溢出的情况,解决办法是在系统参数中增加系统参数:
window下, 在catalina.bat最前面
set JAVA_OPTS=-XX:PermSize=64M -XX:MaxPermSize=128m -Xms5
- Karam与TDD
bijian1013
KaramTDD
一.TDD
测试驱动开发(Test-Driven Development,TDD)是一种敏捷(AGILE)开发方法论,它把开发流程倒转了过来,在进行代码实现之前,首先保证编写测试用例,从而用测试来驱动开发(而不是把测试作为一项验证工具来使用)。
TDD的原则很简单:
a.只有当某个
- [Zookeeper学习笔记之七]Zookeeper源代码分析之Zookeeper.States
bit1129
zookeeper
public enum States {
CONNECTING, //Zookeeper服务器不可用,客户端处于尝试链接状态
ASSOCIATING, //???
CONNECTED, //链接建立,可以与Zookeeper服务器正常通信
CONNECTEDREADONLY, //处于只读状态的链接状态,只读模式可以在
- 【Scala十四】Scala核心八:闭包
bit1129
scala
Free variable A free variable of an expression is a variable that’s used inside the expression but not defined inside the expression. For instance, in the function literal expression (x: Int) => (x
- android发送json并解析返回json
ronin47
android
package com.http.test;
import org.apache.http.HttpResponse;
import org.apache.http.HttpStatus;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import
- 一份IT实习生的总结
brotherlamp
PHPphp资料php教程php培训php视频
今天突然发现在不知不觉中自己已经实习了 3 个月了,现在可能不算是真正意义上的实习吧,因为现在自己才大三,在这边撸代码的同时还要考虑到学校的功课跟期末考试。让我震惊的是,我完全想不到在这 3 个月里我到底学到了什么,这是一件多么悲催的事情啊。同时我对我应该 get 到什么新技能也很迷茫。所以今晚还是总结下把,让自己在接下来的实习生活有更加明确的方向。最后感谢工作室给我们几个人这个机会让我们提前出来
- 据说是2012年10月人人网校招的一道笔试题-给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 将重物放到天平左侧,问在两边如何添加砝码
bylijinnan
java
public class ScalesBalance {
/**
* 题目:
* 给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 (假设N无限大,但一种重量的砝码只有一个)
* 将重物放到天平左侧,问在两边如何添加砝码使两边平衡
*
* 分析:
* 三进制
* 我们约定括号表示里面的数是三进制,例如 47=(1202
- dom4j最常用最简单的方法
chiangfai
dom4j
要使用dom4j读写XML文档,需要先下载dom4j包,dom4j官方网站在 http://www.dom4j.org/目前最新dom4j包下载地址:http://nchc.dl.sourceforge.net/sourceforge/dom4j/dom4j-1.6.1.zip
解开后有两个包,仅操作XML文档的话把dom4j-1.6.1.jar加入工程就可以了,如果需要使用XPath的话还需要
- 简单HBase笔记
chenchao051
hbase
一、Client-side write buffer 客户端缓存请求 描述:可以缓存客户端的请求,以此来减少RPC的次数,但是缓存只是被存在一个ArrayList中,所以多线程访问时不安全的。 可以使用getWriteBuffer()方法来取得客户端缓存中的数据。 默认关闭。 二、Scan的Caching 描述: next( )方法请求一行就要使用一次RPC,即使
- mysqldump导出时出现when doing LOCK TABLES
daizj
mysqlmysqdump导数据
执行 mysqldump -uxxx -pxxx -hxxx -Pxxxx database tablename > tablename.sql
导出表时,会报
mysqldump: Got error: 1044: Access denied for user 'xxx'@'xxx' to database 'xxx' when doing LOCK TABLES
解决
- CSS渲染原理
dcj3sjt126com
Web
从事Web前端开发的人都与CSS打交道很多,有的人也许不知道css是怎么去工作的,写出来的css浏览器是怎么样去解析的呢?当这个成为我们提高css水平的一个瓶颈时,是否应该多了解一下呢?
一、浏览器的发展与CSS
- 《阿甘正传》台词
dcj3sjt126com
Part Ⅰ:
《阿甘正传》Forrest Gump经典中英文对白
Forrest: Hello! My names Forrest. Forrest Gump. You wanna Chocolate? I could eat about a million and a half othese. My momma always said life was like a box ochocol
- Java处理JSON
dyy_gusi
json
Json在数据传输中很好用,原因是JSON 比 XML 更小、更快,更易解析。
在Java程序中,如何使用处理JSON,现在有很多工具可以处理,比较流行常用的是google的gson和alibaba的fastjson,具体使用如下:
1、读取json然后处理
class ReadJSON
{
public static void main(String[] args)
- win7下nginx和php的配置
geeksun
nginx
1. 安装包准备
nginx : 从nginx.org下载nginx-1.8.0.zip
php: 从php.net下载php-5.6.10-Win32-VC11-x64.zip, php是免安装文件。
RunHiddenConsole: 用于隐藏命令行窗口
2. 配置
# java用8080端口做应用服务器,nginx反向代理到这个端口即可
p
- 基于2.8版本redis配置文件中文解释
hongtoushizi
redis
转载自: http://wangwei007.blog.51cto.com/68019/1548167
在Redis中直接启动redis-server服务时, 采用的是默认的配置文件。采用redis-server xxx.conf 这样的方式可以按照指定的配置文件来运行Redis服务。下面是Redis2.8.9的配置文
- 第五章 常用Lua开发库3-模板渲染
jinnianshilongnian
nginxlua
动态web网页开发是Web开发中一个常见的场景,比如像京东商品详情页,其页面逻辑是非常复杂的,需要使用模板技术来实现。而Lua中也有许多模板引擎,如目前我在使用的lua-resty-template,可以渲染很复杂的页面,借助LuaJIT其性能也是可以接受的。
如果学习过JavaEE中的servlet和JSP的话,应该知道JSP模板最终会被翻译成Servlet来执行;而lua-r
- JZSearch大数据搜索引擎
颠覆者
JavaScript
系统简介:
大数据的特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。网络日志、视频、图片、地理位置信息等等。第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。第四,处理速度快。最后这一点也是和传统的数据挖掘技术有着本质的不同。业界将其归纳为4个“V”——Volume,Variety,Value,Velocity。大数据搜索引
- 10招让你成为杰出的Java程序员
pda158
java编程框架
如果你是一个热衷于技术的
Java 程序员, 那么下面的 10 个要点可以让你在众多 Java 开发人员中脱颖而出。
1. 拥有扎实的基础和深刻理解 OO 原则 对于 Java 程序员,深刻理解 Object Oriented Programming(面向对象编程)这一概念是必须的。没有 OOPS 的坚实基础,就领会不了像 Java 这些面向对象编程语言
- tomcat之oracle连接池配置
小网客
oracle
tomcat版本7.0
配置oracle连接池方式:
修改tomcat的server.xml配置文件:
<GlobalNamingResources>
<Resource name="utermdatasource" auth="Container"
type="javax.sql.DataSou
- Oracle 分页算法汇总
vipbooks
oraclesql算法.net
这是我找到的一些关于Oracle分页的算法,大家那里还有没有其他好的算法没?我们大家一起分享一下!
-- Oracle 分页算法一
select * from (
select page.*,rownum rn from (select * from help) page
-- 20 = (currentPag