- x86-64汇编语言训练程序与实战
十除以十等于一
本文还有配套的精品资源,点击获取简介:汇编语言是一种低级语言,与机器代码紧密相关,特别适用于编写系统级代码及性能要求高的应用。nasm编译器是针对x86和x86-64架构的汇编语言编译器,支持多种语法风格和指令集。项目Euler提供数学和计算机科学问题,鼓励编程技巧应用,前100个问题的答案可共享。x86-64架构扩展了寄存器数量并引入新指令,提升了数据处理效率。学习汇编语言能够深入理解计算机底层
- 日更006 终极训练营day3
懒cici
人生创业课(2)今天的主题:学习方法一:遇到有用的书,反复读,然后结合自身实际,列践行清单,不要再写读书笔记思考这本书与我有什么关系,我在哪些地方能用到,之后我该怎么用方法二:读完书没映像怎么办?训练你的大脑,方法:每读完一遍书,立马合上书,做一场分享,几分钟都行对自己的学习要求太低,要逼自己方法三:学习深度不够怎么办?找到细分领域的榜样,把他们的文章、书籍、产品都体验一遍,成为他们的超级用户,向
- 英伟达靠什么支撑起了4万亿?AI泡沫还能撑多久?
英伟达市值突破4万亿美元,既是AI算力需求爆发的直接体现,也暗含市场对未来的狂热预期。其支撑逻辑与潜在风险并存,而AI泡沫的可持续性则取决于技术、商业与地缘政治的复杂博弈。⚙️一、英伟达4万亿市值的核心支撑因素技术垄断与生态壁垒硬件优势:英伟达GPU在AI训练市场占有率超87%,H100芯片的FP16算力达1979TFLOPS,领先竞品3-5倍。CUDA生态:400万开发者构建的软件护城河,成为A
- 互信息:理论框架、跨学科应用与前沿进展
大千AI助手
人工智能Python#OTHER人工智能深度学习算法互信息香农通信随机变量
1.起源与核心定义互信息(MutualInformation,MI)由克劳德·香农(ClaudeShannon)在1948年开创性论文《AMathematicalTheoryofCommunication》中首次提出,该论文奠定了现代信息论的基础。互信息用于量化两个随机变量之间的统计依赖关系,定义为:若已知一个随机变量的取值,能为另一个随机变量提供的信息量。数学上,对于离散随机变量XXX和YYY,
- 包含日志获取webshell
陈望_ning
日志文件关闭:Apache目录下的httpd.conf文件#ErrorLog"logs/error.log"#CustomLog"logs/access.log"common加#号为注释不产生日志文件如果去掉#将会在Apache/logs/目录下产生日志文件linux:access_logerror_logwindows:access.logerror.logaccess_log每一行记录了一次网
- 代码随想录算法训练营第三十五天
01背包问题二维题目链接01背包问题二维题解importjava.util.Scanner;publicclassMain{publicstaticvoidmain(String[]args){Scannersc=newScanner(System.in);intM=sc.nextInt();intN=sc.nextInt();int[]space=newint[M];int[]value=new
- D124:如何训练独立思考力?
大栗子_
当我们要判断一个理论或者思想是否正确,需要有三个层次,分别是体验、解释和分析。首先看体验。很多时候,我们会相信“听上去、感觉是对的”的事情。我们之前讲的太空笔的故事之所以大多数人都认为是对的,就是有一些看似真实的关键词,比如美国,NASA,设计等,这些词看起来非常权威,但是离我们又遥远,这时候我们的大脑就会放松警惕了。于是,我们毫不犹豫就接受了。说到这里,你有没有发现之前的电视广告中的各种高让我们
- 社交电商平台有哪些?社交电商怎么做?
氧惠评测
社交电商平台有很多,以下是一些常见的社交电商平台:氧惠APP是与以往完全不同的抖客+淘客app!2024全新模式,我的直推也会放到你下面。主打:带货高补贴,深受各位带货团队长喜爱(训练营导师每天出单带货几万单)。注册即可享受高补贴+0撸+捡漏等带货新体验。送万元推广大礼包,教你如何1年做到百万团队。珊珊导师氧惠邀请码888999,注册送万元推广大礼包,教你如何1年做到百万团队。氧惠app:氧惠ap
- AI模型训练中过拟合和欠拟合的区别是什么?
workflower
人工智能算法人工智能数据分析
在AI模型训练中,过拟合和欠拟合是两种常见的模型性能问题,核心区别在于模型对数据的学习程度和泛化能力:欠拟合(Underfitting)-定义:模型未能充分学习到数据中的规律,对训练数据的拟合程度较差,在训练集和测试集上的表现都不好(如准确率低、损失值高)。-原因:-模型结构过于简单(如用线性模型解决非线性问题);-训练数据量不足或特征信息不充分;-训练时间太短,模型尚未学到有效模式。-表现:训练
- Anaconda 和 Miniconda:功能详解与选择建议
古月฿
python入门pythonconda
Anaconda和Miniconda详细介绍一、Anaconda的详细介绍1.什么是Anaconda?Anaconda是一个开源的包管理和环境管理工具,在数据科学、机器学习以及科学计算领域发挥着关键作用。它以Python和R语言为基础,为用户精心准备了大量预装库和工具,极大地缩短了搭建数据科学环境的时间。对于那些想要快速开展数据分析、模型训练等工作的人员来说,Anaconda就像是一个一站式的“数
- 机器学习必备数学与编程指南:从入门到精通
a小胡哦
机器学习基础机器学习人工智能
一、机器学习核心数学基础1.线性代数(神经网络的基础)必须掌握:矩阵运算(乘法、转置、逆)向量空间与线性变换特征值分解与奇异值分解(SVD)为什么重要:神经网络本质就是矩阵运算学习技巧:用NumPy实际操作矩阵运算2.概率与统计(模型评估的关键)核心概念:条件概率与贝叶斯定理概率分布(正态、泊松、伯努利)假设检验与p值应用场景:朴素贝叶斯、A/B测试3.微积分(优化算法的基础)重点掌握:导数与偏导
- 魔搭平台实战:手把手教你训练SDXL模型,解锁AI绘画新纪元
Liudef06小白
特殊专栏AIGC人工智能AI作画人工智能AIGC
魔搭平台实战:手把手教你训练SDXL模型,解锁AI绘画新纪元随着多模态AI技术的爆发式发展,StableDiffusionXL(SDXL)等文生图模型正在彻底重塑创意产业工作流。本文将深入解析如何在魔搭平台高效训练SDXL模型,并探讨AI绘画技术对设计行业的革命性影响。一、SDXL模型架构解析1.1双文本编码器设计SDXL采用双文本编码器架构,显著提升提示词理解能力:#SDXL文本编码器结构示意c
- AI人工智能中的数据挖掘:提升智能决策能力
AI人工智能中的数据挖掘:提升智能决策能力关键词:数据挖掘、人工智能、机器学习、智能决策、数据分析、特征工程、模型优化摘要:本文深入探讨了数据挖掘在人工智能领域中的核心作用,重点分析了如何通过数据挖掘技术提升智能决策能力。文章从基础概念出发,详细介绍了数据挖掘的关键算法、数学模型和实际应用场景,并通过Python代码示例展示了数据挖掘的全流程。最后,文章展望了数据挖掘技术的未来发展趋势和面临的挑战
- D13-0729-阿凡提
阿凡提在冰川
D13D13-0729-阿凡提如何避开听力训练中的常见坑——Zoe分享听力训练中的常见坑听力训练中的常见坑看不懂,写不出:生词障碍,背景知识能看看懂,写不出:口音、语音现象(连读、弱读、爆破等)、语法一些语音现象失去爆破:两个爆破音连在一起,前面的失去爆破击穿:辅音、爆破音后面接h一般不发音,Youkown听力练习最大的坑听完不复习表现::听完不对材料进行复习,仅仅对一些错词进行更正,不做进一步拓
- 【大模型微调实战】4. P-Tuning爆款文案生成:让模型学会小红书“爽感”写作,转化率提升300%
AI_DL_CODE
大模型微调P-Tuning小红书文案爆款生成情绪强化自然语言生成提示工程
摘要:在内容营销竞争白热化的当下,普通文案已难以突破流量壁垒。本文聚焦P-Tuning技术在小红书爆款文案生成中的落地应用,通过参数化提示向量优化,将抽象的“爽感”写作转化为可量化、可训练的技术指标。文中提出“六步成文法”,从情绪化数据集构建到爆款元素复刻,完整拆解如何用RTX3060级显卡实现0.1%参数量微调,使文案点击率从2.1%提升至8.7%,爆文率提高5倍,单条文案带货超8万元。核心创新
- 2018年中南大学中英翻译
某翁
参考:20180827235856533.jpg【1】机器学习理论表明,机器学习算法能从有限个训练集样本上得到较好的泛化【1】Machinelearningtheoryshowsthatmachinelearningalgorithmcangeneralizewellfromfinitetrainingsetsampleslimited有限的infinite无限的【2】这似乎违背了一些基本的逻辑准
- 初探数学思维(一):数学概括
JackyFuu
数学培养规则意识;培养周密思维和创新能力“现代电子计算机之父”冯·诺依曼对微积分的评价:微积分是现代数学的第一个成就,而且怎样评价它的重要性都不为过。我认为,微积分比其他任何事物都更清楚地表明了现代数学的发端;而且,作为其逻辑发展的数学分析体系仍然构成了精密思维中最伟大的技术进展。《GEB-一条永恒的金带》,普利策奖,1979,美国,指出有一条永恒的金带把数理逻辑、绘画、音乐等不同领域之间的共同规
- HikariCP调试日志深度解析:生产环境故障排查完全指南
HikariCP调试日志深度解析:生产环境故障排查完全指南更新时间:2025年7月4日|作者:资深架构师|适用版本:HikariCP5.x+|难度等级:中高级前言在生产环境中,数据库连接池往往是系统性能的关键瓶颈。HikariCP作为当前最流行的Java连接池,其调试日志包含了丰富的运行时信息,能够帮助我们快速定位和解决各种连接池相关问题。本文将深入解析HikariCP的日志体系,提供一套完整的故
- 《应对焦虑》做好4点帮你轻松化解焦虑,并从焦虑中走出来
程杰读书
你焦虑过吗?有被焦虑困扰过吗?那么什么是焦虑呢?焦虑就是对亲人或自己生命安全,前途命运等的过度担心,而产生的一种烦躁情绪。我曾经有一段时间也特别焦虑。那是在一年前由于孩子的数学成绩很差,思维跟不上。我经常辅导她,就是不开窍。把我气的心脏快炸了。怎么办呢?眼看就要上小学高年级了。心里那个着急啊,真的是无处可说。于是就在网校上报了名,让专业老师来辅导。可她对待作业都是马马虎虎,一点都不认真。眼看一学期
- 时序预测 | MATLAB实现贝叶斯优化CNN-GRU时间序列预测(股票价格预测)
Matlab机器学习之心
matlabcnngru
✅作者简介:热爱数据处理、数学建模、仿真设计、论文复现、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击主页:Matlab科研工作室个人信条:格物致知,期刊达人。内容介绍股票价格预测一直是金融领域一个极具挑战性的课题。其内在的非线性、随机性和复杂性使得传统的预测方法难以取得令人满意的效果。近年来,深度学习技术,特别是卷积神经网络(CNN)和门控循环单元(GRU)的结合,为时
- 微服务日志追踪,Skywalking接入TraceId功能
Victor刘
微服务skywalkingjava
文章目录一、借助skywalking追加traceIdlogbacklog4j2效果二、让skywalking显示日志内容版本差异logback配置文件log4j2配置文件一、借助skywalking追加traceId背景:在微服务或多副本中难以观察一个链路的日志,需要通过唯一traceId标识来查找,下面介绍Skywalking-traceId在Java中的配置方法。介绍两种java日志的配置方
- 时序预测 | MATLAB实现BO-CNN-GRU贝叶斯优化卷积门控循环单元时间序列预测
Matlab算法改进和仿真定制工程师
matlabcnngru
✅作者简介:热爱数据处理、数学建模、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击:Matlab科研工作室个人信条:格物致知。内容介绍时间序列预测在各个领域都具有重要的应用价值,例如金融市场预测、气象预报、交通流量预测等。准确地预测未来趋势对于决策制定至关重要。近年来,深度学习技术在时间序列预测领域取得了显著进展,其中卷积神经网络(CNN)和门控循环单元(GRU)由于其强
- 如何运用深度学习打造高效AI人工智能系统
AI智能探索者
AIAgent智能体开发实战人工智能深度学习ai
如何运用深度学习打造高效AI人工智能系统关键词:深度学习、AI系统、神经网络、模型优化、实战开发摘要:本文将从深度学习的核心概念出发,结合生活实例和代码实战,系统讲解如何构建高效AI系统。我们会拆解数据准备、模型设计、训练优化、部署落地的全流程,揭秘“数据-模型-训练-推理”的协同机制,并通过具体案例演示从0到1开发AI系统的关键技巧,帮助开发者掌握打造高效AI系统的底层逻辑。背景介绍目的和范围在
- 我的第一本书 - 草稿
2252张旭阳
我的第一本书第一段.我的第1本书是天地山出版社的《中国民间故事》,这是我妈妈给我买的书,在2022.8.13买的。第二段当时因为是在网课上说的,所以我让妈妈在网上买了下来,当时我对妈妈说:“语文老师,今天让我们买一本叫做中国民间故事的书。”妈妈说:“既然是老师的要求,我就给你买下来吧。”话音刚落,因为马要开始上数学的网课了,我当时就被母亲的话感动了,到了下午写完作业,我就拿了五块钱,去给母亲买了一
- 在寻找中遇见
贵州001徐萍
我校在校学生122名,在职教师5名,一至五年级五个班,其中留守儿童68名,是一所名副其实的留守学校。由于大部分学生离学校较远,学校是十点钟才上课。学校无保安,我只好住在学校,我就成了名副其实的留守校长。我师资严重不足,不要说开足开齐课时,连最起码的语文数学都难以保证。城市的家长担心孩子输在起跑线上,我校的学生连站在赛场的机会都没有,更不要说输在起跑线。我作为大山深处的留守校长,承载着122个家庭的
- 亲子日记702篇,九月十五号
陈艺萱妈妈
开学已经两个多星期了,本来对担心孩子的英语了,没想到经过两个星期的学习,孩子对英语挺感兴趣的,还得说特别爱上英语课,英语课老师让他们玩游戏就学习了,学习一门新课,首先要提高孩子学习的兴趣,这个英语老师挺不错的。晚上检查完数学跟语文作业,我就看孩子开始学英语,我们一起给英语小视频配音,开始孩子有点紧张,我说没事,配的不好,咱们得重新配,让孩子多读几遍,没想到一次就成功了,我们来回回放,还在感觉特别新
- Ubuntu Docker 安装Redis
LLLL96
Ubuntudockerdockerredisubuntu
目录介绍1.数据结构丰富2.高性能3.持久化1.拉取Redis镜像2.创建挂载目录(可选)3.配置Redis持久化(可选)4.使用配置文件运行容器5.查看redis日志介绍1.数据结构丰富Redis支持多种数据结构,包括:字符串(String):可以用来存储任何类型的数据,例如文本、数字或二进制数据。哈希(Hash):存储字段和值的映射,适合用于表示对象。列表(List):有序的字符串列表,可以用
- 李汶翰、徐娇领衔主演,杭州2022年亚运组委会授权电视剧《泳往直前》阵容官宣!
楚离杜子腾
今日,杭州亚组委授权电视剧《泳往直前》阵容官宣,由黄克敏执导,李汶翰、徐娇领衔主演。《泳往直前》是亚运会筹备工作启动以来,着手谋划创作的亚运主题文艺精品项目之一,也是杭州亚组委官方授权拍摄的唯一一部亚运主题电视剧。《泳往直前》主要讲述了四名背景各异,独具个性的少年在泳池奋力拼搏、执着追梦的故事。中年失意的游泳教练梁友光,为了证明自己的能力,四处挖掘游泳的好苗子冲刺亚运会,在发现了毫无训练经验却颇有
- 零数学基础理解AI核心概念:梯度下降可视化实战
九章云极AladdinEdu
人工智能gpu算力深度学习pytorchpython语言模型opencv
点击“AladdinEdu,同学们用得起的【H卡】算力平台”,H卡级别算力,按量计费,灵活弹性,顶级配置,学生专属优惠。用Python动画演示损失函数优化过程,数学公式具象化读者收获:直观理解模型训练本质,破除"数学恐惧症"当盲人登山者摸索下山路径时,他本能地运用了梯度下降算法。本文将用动态可视化技术,让你像感受重力一样理解AI训练的核心原理——无需任何数学公式推导。一、梯度下降:AI世界的"万有
- 电影优惠券在哪里领?电影优惠券领取渠道分享
高省爱氧惠
对于电影爱好者来说,能够用更优惠的价格观看心仪的电影无疑是一种享受。那么,如何获取电影优惠券呢?今天,我们就来分享一些电影优惠券的领取渠道,帮助你在观影时更加省钱!氧惠APP是与以往完全不同的抖客+淘客app!2024全新模式,我的直推也会放到你下面。主打:带货高补贴,深受各位带货团队长喜爱(训练营导师每天出单带货几万单)。注册即可享受高补贴+0撸+捡漏等带货新体验。送万元推广大礼包,教你如何1年
- java封装继承多态等
麦田的设计者
javaeclipsejvmcencapsulatopn
最近一段时间看了很多的视频却忘记总结了,现在只能想到什么写什么了,希望能起到一个回忆巩固的作用。
1、final关键字
译为:最终的
&
- F5与集群的区别
bijian1013
weblogic集群F5
http请求配置不是通过集群,而是F5;集群是weblogic容器的,如果是ejb接口是通过集群。
F5同集群的差别,主要还是会话复制的问题,F5一把是分发http请求用的,因为http都是无状态的服务,无需关注会话问题,类似
- LeetCode[Math] - #7 Reverse Integer
Cwind
java题解MathLeetCodeAlgorithm
原题链接:#7 Reverse Integer
要求:
按位反转输入的数字
例1: 输入 x = 123, 返回 321
例2: 输入 x = -123, 返回 -321
难度:简单
分析:
对于一般情况,首先保存输入数字的符号,然后每次取输入的末位(x%10)作为输出的高位(result = result*10 + x%10)即可。但
- BufferedOutputStream
周凡杨
首先说一下这个大批量,是指有上千万的数据量。
例子:
有一张短信历史表,其数据有上千万条数据,要进行数据备份到文本文件,就是执行如下SQL然后将结果集写入到文件中!
select t.msisd
- linux下模拟按键输入和鼠标
被触发
linux
查看/dev/input/eventX是什么类型的事件, cat /proc/bus/input/devices
设备有着自己特殊的按键键码,我需要将一些标准的按键,比如0-9,X-Z等模拟成标准按键,比如KEY_0,KEY-Z等,所以需要用到按键 模拟,具体方法就是操作/dev/input/event1文件,向它写入个input_event结构体就可以模拟按键的输入了。
linux/in
- ContentProvider初体验
肆无忌惮_
ContentProvider
ContentProvider在安卓开发中非常重要。与Activity,Service,BroadcastReceiver并称安卓组件四大天王。
在android中的作用是用来对外共享数据。因为安卓程序的数据库文件存放在data/data/packagename里面,这里面的文件默认都是私有的,别的程序无法访问。
如果QQ游戏想访问手机QQ的帐号信息一键登录,那么就需要使用内容提供者COnte
- 关于Spring MVC项目(maven)中通过fileupload上传文件
843977358
mybatisspring mvc修改头像上传文件upload
Spring MVC 中通过fileupload上传文件,其中项目使用maven管理。
1.上传文件首先需要的是导入相关支持jar包:commons-fileupload.jar,commons-io.jar
因为我是用的maven管理项目,所以要在pom文件中配置(每个人的jar包位置根据实际情况定)
<!-- 文件上传 start by zhangyd-c --&g
- 使用svnkit api,纯java操作svn,实现svn提交,更新等操作
aigo
svnkit
原文:http://blog.csdn.net/hardwin/article/details/7963318
import java.io.File;
import org.apache.log4j.Logger;
import org.tmatesoft.svn.core.SVNCommitInfo;
import org.tmateso
- 对比浏览器,casperjs,httpclient的Header信息
alleni123
爬虫crawlerheader
@Override
protected void doGet(HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException
{
String type=req.getParameter("type");
Enumeration es=re
- java.io操作 DataInputStream和DataOutputStream基本数据流
百合不是茶
java流
1,java中如果不保存整个对象,只保存类中的属性,那么我们可以使用本篇文章中的方法,如果要保存整个对象 先将类实例化 后面的文章将详细写到
2,DataInputStream 是java.io包中一个数据输入流允许应用程序以与机器无关方式从底层输入流中读取基本 Java 数据类型。应用程序可以使用数据输出流写入稍后由数据输入流读取的数据。
- 车辆保险理赔案例
bijian1013
车险
理赔案例:
一货运车,运输公司为车辆购买了机动车商业险和交强险,也买了安全生产责任险,运输一车烟花爆竹,在行驶途中发生爆炸,出现车毁、货损、司机亡、炸死一路人、炸毁一间民宅等惨剧,针对这几种情况,该如何赔付。
赔付建议和方案:
客户所买交强险在这里不起作用,因为交强险的赔付前提是:“机动车发生道路交通意外事故”;
如果是交通意外事故引发的爆炸,则优先适用交强险条款进行赔付,不足的部分由商业
- 学习Spring必学的Java基础知识(5)—注解
bijian1013
javaspring
文章来源:http://www.iteye.com/topic/1123823,整理在我的博客有两个目的:一个是原文确实很不错,通俗易懂,督促自已将博主的这一系列关于Spring文章都学完;另一个原因是为免原文被博主删除,在此记录,方便以后查找阅读。
有必要对
- 【Struts2一】Struts2 Hello World
bit1129
Hello world
Struts2 Hello World应用的基本步骤
创建Struts2的Hello World应用,包括如下几步:
1.配置web.xml
2.创建Action
3.创建struts.xml,配置Action
4.启动web server,通过浏览器访问
配置web.xml
<?xml version="1.0" encoding="
- 【Avro二】Avro RPC框架
bit1129
rpc
1. Avro RPC简介 1.1. RPC
RPC逻辑上分为二层,一是传输层,负责网络通信;二是协议层,将数据按照一定协议格式打包和解包
从序列化方式来看,Apache Thrift 和Google的Protocol Buffers和Avro应该是属于同一个级别的框架,都能跨语言,性能优秀,数据精简,但是Avro的动态模式(不用生成代码,而且性能很好)这个特点让人非常喜欢,比较适合R
- lua set get cookie
ronin47
lua cookie
lua:
local access_token = ngx.var.cookie_SGAccessToken
if access_token then
ngx.header["Set-Cookie"] = "SGAccessToken="..access_token.."; path=/;Max-Age=3000"
end
- java-打印不大于N的质数
bylijinnan
java
public class PrimeNumber {
/**
* 寻找不大于N的质数
*/
public static void main(String[] args) {
int n=100;
PrimeNumber pn=new PrimeNumber();
pn.printPrimeNumber(n);
System.out.print
- Spring源码学习-PropertyPlaceholderHelper
bylijinnan
javaspring
今天在看Spring 3.0.0.RELEASE的源码,发现PropertyPlaceholderHelper的一个bug
当时觉得奇怪,上网一搜,果然是个bug,不过早就有人发现了,且已经修复:
详见:
http://forum.spring.io/forum/spring-projects/container/88107-propertyplaceholderhelper-bug
- [逻辑与拓扑]布尔逻辑与拓扑结构的结合会产生什么?
comsci
拓扑
如果我们已经在一个工作流的节点中嵌入了可以进行逻辑推理的代码,那么成百上千个这样的节点如果组成一个拓扑网络,而这个网络是可以自动遍历的,非线性的拓扑计算模型和节点内部的布尔逻辑处理的结合,会产生什么样的结果呢?
是否可以形成一种新的模糊语言识别和处理模型呢? 大家有兴趣可以试试,用软件搞这些有个好处,就是花钱比较少,就算不成
- ITEYE 都换百度推广了
cuisuqiang
GoogleAdSense百度推广广告外快
以前ITEYE的广告都是谷歌的Google AdSense,现在都换成百度推广了。
为什么个人博客设置里面还是Google AdSense呢?
都知道Google AdSense不好申请,这在ITEYE上也不是讨论了一两天了,强烈建议ITEYE换掉Google AdSense。至少,用一个好申请的吧。
什么时候能从ITEYE上来点外快,哪怕少点
- 新浪微博技术架构分析
dalan_123
新浪微博架构
新浪微博在短短一年时间内从零发展到五千万用户,我们的基层架构也发展了几个版本。第一版就是是非常快的,我们可以非常快的实现我们的模块。我们看一下技术特点,微博这个产品从架构上来分析,它需要解决的是发表和订阅的问题。我们第一版采用的是推的消息模式,假如说我们一个明星用户他有10万个粉丝,那就是说用户发表一条微博的时候,我们把这个微博消息攒成10万份,这样就是很简单了,第一版的架构实际上就是这两行字。第
- 玩转ARP攻击
dcj3sjt126com
r
我写这片文章只是想让你明白深刻理解某一协议的好处。高手免看。如果有人利用这片文章所做的一切事情,盖不负责。 网上关于ARP的资料已经很多了,就不用我都说了。 用某一位高手的话来说,“我们能做的事情很多,唯一受限制的是我们的创造力和想象力”。 ARP也是如此。 以下讨论的机子有 一个要攻击的机子:10.5.4.178 硬件地址:52:54:4C:98
- PHP编码规范
dcj3sjt126com
编码规范
一、文件格式
1. 对于只含有 php 代码的文件,我们将在文件结尾处忽略掉 "?>" 。这是为了防止多余的空格或者其它字符影响到代码。例如:<?php$foo = 'foo';2. 缩进应该能够反映出代码的逻辑结果,尽量使用四个空格,禁止使用制表符TAB,因为这样能够保证有跨客户端编程器软件的灵活性。例
- linux 脱机管理(nohup)
eksliang
linux nohupnohup
脱机管理 nohup
转载请出自出处:http://eksliang.iteye.com/blog/2166699
nohup可以让你在脱机或者注销系统后,还能够让工作继续进行。他的语法如下
nohup [命令与参数] --在终端机前台工作
nohup [命令与参数] & --在终端机后台工作
但是这个命令需要注意的是,nohup并不支持bash的内置命令,所
- BusinessObjects Enterprise Java SDK
greemranqq
javaBOSAPCrystal Reports
最近项目用到oracle_ADF 从SAP/BO 上调用 水晶报表,资料比较少,我做一个简单的分享,给和我一样的新手 提供更多的便利。
首先,我是尝试用JAVA JSP 去访问的。
官方API:http://devlibrary.businessobjects.com/BusinessObjectsxi/en/en/BOE_SDK/boesdk_ja
- 系统负载剧变下的管控策略
iamzhongyong
高并发
假如目前的系统有100台机器,能够支撑每天1亿的点击量(这个就简单比喻一下),然后系统流量剧变了要,我如何应对,系统有那些策略可以处理,这里总结了一下之前的一些做法。
1、水平扩展
这个最容易理解,加机器,这样的话对于系统刚刚开始的伸缩性设计要求比较高,能够非常灵活的添加机器,来应对流量的变化。
2、系统分组
假如系统服务的业务不同,有优先级高的,有优先级低的,那就让不同的业务调用提前分组
- BitTorrent DHT 协议中文翻译
justjavac
bit
前言
做了一个磁力链接和BT种子的搜索引擎 {Magnet & Torrent},因此把 DHT 协议重新看了一遍。
BEP: 5Title: DHT ProtocolVersion: 3dec52cb3ae103ce22358e3894b31cad47a6f22bLast-Modified: Tue Apr 2 16:51:45 2013 -070
- Ubuntu下Java环境的搭建
macroli
java工作ubuntu
配置命令:
$sudo apt-get install ubuntu-restricted-extras
再运行如下命令:
$sudo apt-get install sun-java6-jdk
待安装完毕后选择默认Java.
$sudo update- alternatives --config java
安装过程提示选择,输入“2”即可,然后按回车键确定。
- js字符串转日期(兼容IE所有版本)
qiaolevip
TODateStringIE
/**
* 字符串转时间(yyyy-MM-dd HH:mm:ss)
* result (分钟)
*/
stringToDate : function(fDate){
var fullDate = fDate.split(" ")[0].split("-");
var fullTime = fDate.split("
- 【数据挖掘学习】关联规则算法Apriori的学习与SQL简单实现购物篮分析
superlxw1234
sql数据挖掘关联规则
关联规则挖掘用于寻找给定数据集中项之间的有趣的关联或相关关系。
关联规则揭示了数据项间的未知的依赖关系,根据所挖掘的关联关系,可以从一个数据对象的信息来推断另一个数据对象的信息。
例如购物篮分析。牛奶 ⇒ 面包 [支持度:3%,置信度:40%] 支持度3%:意味3%顾客同时购买牛奶和面包。 置信度40%:意味购买牛奶的顾客40%也购买面包。 规则的支持度和置信度是两个规则兴
- Spring 5.0 的系统需求,期待你的反馈
wiselyman
spring
Spring 5.0将在2016年发布。Spring5.0将支持JDK 9。
Spring 5.0的特性计划还在工作中,请保持关注,所以作者希望从使用者得到关于Spring 5.0系统需求方面的反馈。