from sklearn.datasets import make_blobs
from sklearn.neighbors import KNeighborsClassifier
import matplotlib.pyplot as plt
import numpy as np
centers = [[-2,2],[2,2],[0,4]]
x,y = make_blobs(n_samples=60,centers=centers,cluster_std=0.6)
plt.figure(figsize=(16,10),dpi=144)
c=np.array(centers)
plt.scatter(x[:,0],x[:,1],c=y,s=100,cmap="cool")
plt.scatter(c[:,0], c[:,1], s=100, marker="^" ,c="orange")
k=5
clf=KNeighborsClassifier(n_neighbors=k)
clf.fit(x,y)
x_sample=[[0,2]]
neighbors=clf.kneighbors(x_sample,return_distance=False)
plt.figure(figsize=(16,10) , dpi=144)
plt.scatter(x[:, 0],x[:,1], c=y, s=100, cmap="cool")
plt.scatter(c[:, 0],c[:,1], s=100, marker="^", c="k")
plt.scatter(x_sample[0][0], x_sample[0][1], marker="x", s=100, cmap="cool")
for i in neighbors[0]:
plt.plot([x[i][0], x_sample[0][0]], [x[i][1], x_sample[0][1]], "k--", linewidth=0.6)
plt.show()
