解决问题:在复现GBDT+LR的经典结构的时候,发现需要对两个模型一起进行调参,网上找不到相关代码,研究之后实现LGB + LR的统一调参
需写2个自定义管道流的类来完成
LgbmPipeline类中还包含对将lgb预测值转换为LR预测值作为下一步LR的特征的转换
from sklearn.base import BaseEstimator, TransformerMixin
from lightgbm import LGBMClassifier
from sklearn.linear_model import LogisticRegression
class LgbmPipeline(BaseEstimator, TransformerMixin):
def __init__(self, num_leaves, n_estimators, other_params):
self.num_leaves = num_leaves
self.n_estimators = n_estimators
self.other_params = other_params
def fit(self, X, y=None):
self.lgb = LGBMClassifier(num_leaves = self.num_leaves, n_estimators = self.n_estimators, **self.other_params)
self.lgb.fit(X, y)
return self
def transform(self, X):
try:
lgb_feature = self.lgb.predict(X, pred_leaf=True)
self.lgb_feature_rows_len = lgb_feature.shape[0]
self.lgb_feature_columns_len = lgb_feature.shape[1]
transformed_matrix = np.zeros([self.lgb_feature_rows_len, self.lgb_feature_columns_len * self.num_leaves], dtype=np.int8) # N * num_tress * num_leafs
for i in range(0, self.lgb_feature_rows_len):
temp = np.arange(self.lgb_feature_columns_len) * self.num_leaves + np.array(lgb_feature[i])#计算onehot在100 * 64列当中的位置 arange(100)*64 + y_pred[i]
transformed_matrix[i][temp] += 1
return transformed_matrix
except Exception as ex:
print(ex)
class LrPipeline(BaseEstimator, TransformerMixin):
def __init__(self, class_weight, penalty):
self.class_weight = class_weight
self.penalty = penalty
def fit(self, X, y=None):
self.lr = LogisticRegression(class_weight = self.class_weight, penalty = self.penalty)
self.lr.fit(X, y)
return self
def transform(self, X):
y_pred_scores = self.lr.predict_proba(X)
return y_pred_scores
def predict_proba(self, X):
y_pred_scores = self.lr.predict_proba(X)
return y_pred_scores
管道流实现fit与调用, X_train_tr为ndarry格式的数据
from sklearn.pipeline import Pipeline
from sklearn.linear_model import LogisticRegression
lgb_params = {
'task': 'train',
'boosting_type': 'gbdt', # GBDT算法为基础
'objective': 'binary',
'metric': 'auc', # 评判指标
'max_bin': 255, # 大会有更准的效果,更慢的速度
'learning_rate': 0.1, # 学习率
# 'num_leaves': 32, # 大会更准,但可能过拟合
'max_depth': -1, # 小数据集下限制最大深度可防止过拟合,小于0表示无限制
'feature_fraction': 0.8, # 防止过拟合
'bagging_freq': 5, # 防止过拟合
'bagging_fraction': 0.8, # 防止过拟合
'min_data_in_leaf': 21, # 防止过拟合
'min_sum_hessian_in_leaf': 3.0, # 防止过拟合
'min_child_weight': 0.1,
'lambda_l1': 0.2,
'lambda_l2': 20,
'is_unbalance': True
# 'n_estimators': 20
}
model_pipeline = Pipeline([
("lgb_matrix", LgbmPipeline(num_leaves=32, n_estimators=50, other_params=lgb_params)),
("lr", LrPipeline(class_weight=dict({0: 1, 1: 5}), penalty='l1'))
])
from sklearn.model_selection import GridSearchCV
param_grid = dict(
lgb_matrix__num_leaves = [32],
lgb_matrix__n_estimators = [50],
lr__class_weight=[dict({0: 1, 1: 1}), dict({0: 1, 1: 4}), dict({0: 1, 1: 7})],
lr__penalty = ['l1', 'l2']
)
grid_search_gbdt_lr_pipeline = GridSearchCV(model_pipeline, param_grid=param_grid, verbose=1, cv=2, n_jobs=-1, scoring='recall')
# 调参
grid_search_gbdt_lr_pipeline.fit(X_train_tr, y_train)
# 输出最优模型与最优参数
grid_search_gbdt_lr_best_1 = grid_search_gbdt_lr_pipeline.best_estimator_
print("Best: %f using %s" % (grid_search_gbdt_lr_pipeline.best_score_, grid_search_gbdt_lr_pipeline.best_params_))