R/BioC序列处理之四:BSgenome简介

一、BSgenome和BSgenome数据包

 Bioconductor提供了某些物种的全基因组序列数据包,这些数据包是基于Biostrings构建的,称为BSgenome数据包。不同物种的BSgenome数据包都有类似的数据结构,可以用统一的方式进行处理。但是BSgenome数据包仅包含有数据,它们的处理的方法由另外一个软件包提供,即BSgenome包。
先安装BSgenome包(如果没有安装):
library(BiocInstaller)
biocLite("BSgenome")
载入BSgenome包,并查看当前版本提供的BSgenome数据包:
library(BSgenome)
(ag <- available.genomes())
##  [1] "BSgenome.Alyrata.JGI.v1"              
##  [2] "BSgenome.Amellifera.BeeBase.assembly4"
##  [3] "BSgenome.Amellifera.UCSC.apiMel2"     
##  [4] "BSgenome.Athaliana.TAIR.04232008"     
##  [5] "BSgenome.Athaliana.TAIR.TAIR9"        
##  [6] "BSgenome.Btaurus.UCSC.bosTau3"        
##  [7] "BSgenome.Btaurus.UCSC.bosTau4"        
##  [8] "BSgenome.Btaurus.UCSC.bosTau6"        
##  [9] "BSgenome.Celegans.UCSC.ce10"          
## [10] "BSgenome.Celegans.UCSC.ce2"           
## [11] "BSgenome.Celegans.UCSC.ce6"           
## [12] "BSgenome.Cfamiliaris.UCSC.canFam2"    
## [13] "BSgenome.Cfamiliaris.UCSC.canFam3"    
## [14] "BSgenome.Dmelanogaster.UCSC.dm2"      
## [15] "BSgenome.Dmelanogaster.UCSC.dm3"      
## [16] "BSgenome.Drerio.UCSC.danRer5"         
## [17] "BSgenome.Drerio.UCSC.danRer6"         
## [18] "BSgenome.Drerio.UCSC.danRer7"         
## [19] "BSgenome.Ecoli.NCBI.20080805"         
## [20] "BSgenome.Gaculeatus.UCSC.gasAcu1"     
## [21] "BSgenome.Ggallus.UCSC.galGal3"        
## [22] "BSgenome.Ggallus.UCSC.galGal4"        
## [23] "BSgenome.Hsapiens.UCSC.hg17"          
## [24] "BSgenome.Hsapiens.UCSC.hg18"          
## [25] "BSgenome.Hsapiens.UCSC.hg19"          
## [26] "BSgenome.Mmulatta.UCSC.rheMac2"       
## [27] "BSgenome.Mmusculus.UCSC.mm10"         
## [28] "BSgenome.Mmusculus.UCSC.mm8"          
## [29] "BSgenome.Mmusculus.UCSC.mm9"          
## [30] "BSgenome.Ptroglodytes.UCSC.panTro2"   
## [31] "BSgenome.Ptroglodytes.UCSC.panTro3"   
## [32] "BSgenome.Rnorvegicus.UCSC.rn4"        
## [33] "BSgenome.Rnorvegicus.UCSC.rn5"        
## [34] "BSgenome.Scerevisiae.UCSC.sacCer1"    
## [35] "BSgenome.Scerevisiae.UCSC.sacCer2"    
## [36] "BSgenome.Scerevisiae.UCSC.sacCer3"    
## [37] "BSgenome.Tgondii.ToxoDB.7.0"
# 当前版本提供了18个物种的37个基因组包
unique(gsub("BSgenome\\.([^\\.]+).*", "\\1", ag))
##  [1] "Alyrata"       "Amellifera"    "Athaliana"     "Btaurus"      
##  [5] "Celegans"      "Cfamiliaris"   "Dmelanogaster" "Drerio"       
##  [9] "Ecoli"         "Gaculeatus"    "Ggallus"       "Hsapiens"     
## [13] "Mmulatta"      "Mmusculus"     "Ptroglodytes"  "Rnorvegicus"  
## [17] "Scerevisiae"   "Tgondii"
获取拟南芥的BSgenome数据包(BSgenome.Athaliana.TAIR.TAIR9):
biocLite("BSgenome.Athaliana.TAIR.TAIR9")
载入BSgenome.Athaliana.TAIR.TAIR9包,查看数据信息:
library(BSgenome.Athaliana.TAIR.TAIR9)
# BSgenome.Athaliana.TAIR.TAIR9只定义了一个对象
ls("package:BSgenome.Athaliana.TAIR.TAIR9")
## [1] "Athaliana"
# 查看总体信息
Athaliana
## Arabidopsis genome
## | 
## | organism: Arabidopsis thaliana (Arabidopsis)
## | provider: TAIR
## | provider version: TAIR9
## | release date: June 9, 2009
## | release name: TAIR9 Genome Release
## | 
## | sequences (see '?seqnames'):
## |   Chr1  Chr2  Chr3  Chr4  Chr5  ChrM  ChrC  
## | 
## | (use the '$' or '[[' operator to access a given sequence)
# 不载入序列就可以获取染色体名称和长度信息
seqnames(Athaliana)
## [1] "Chr1" "Chr2" "Chr3" "Chr4" "Chr5" "ChrM" "ChrC"
seqlengths(Athaliana)
##     Chr1     Chr2     Chr3     Chr4     Chr5     ChrM     ChrC 
## 30427671 19698289 23459830 18585056 26975502   366924   154478

二、BSgenome方法

BSgenome数据包内包含的序列为DNAString,DNAStringSet或MaskedDNAString对象,完全可以使用Biostrings包的方法进行处理:
# 可以使用多种方式获取某一序列
Athaliana$Chr1
##   30427671-letter "DNAString" instance
## seq: CCCTAAACCCTAAACCCTAAACCCTAAACCTCTG...TAGGGTTTAGGGTTTAGGGTTTAGGGTTTAGGG
Athaliana[[1]]
##   30427671-letter "DNAString" instance
## seq: CCCTAAACCCTAAACCCTAAACCCTAAACCTCTG...TAGGGTTTAGGGTTTAGGGTTTAGGGTTTAGGG
Athaliana[["Chr1"]]
##   30427671-letter "DNAString" instance
## seq: CCCTAAACCCTAAACCCTAAACCCTAAACCTCTG...TAGGGTTTAGGGTTTAGGGTTTAGGGTTTAGGG
下面使用sapply函数统计碱基组成和GC含量。如果不熟悉sapply函数,请 参考这篇文章
# 统计碱基组成
sapply(seqnames(Athaliana), function(x) alphabetFrequency(Athaliana[[x]]))
##      Chr1    Chr2    Chr3    Chr4    Chr5   ChrM  ChrC
## A 9709674 6315641 7484757 5940546 8621974 102464 48546
## C 5435374 3542973 4258333 3371349 4832253  82661 28496
## G 5421151 3520766 4262704 3356091 4858759  81609 27570
## T 9697113 6316348 7448059 5914038 8652238 100190 49866
## M      76       5       2       1       0      0     0
## R      36       7       4       0       0      0     0
## W     124      18       2       0       0      0     0
## S      30       3       1       0       0      0     0
## Y      82      12       2       0       0      0     0
## K      53      10       0       0       0      0     0
## V       0       0       0       0       0      0     0
## H       0       0       0       0       0      0     0
## D       0       0       0       1       0      0     0
## B       0       0       0       0       0      0     0
## N  163958    2506    5966    3030   10278      0     0
## -       0       0       0       0       0      0     0
## +       0       0       0       0       0      0     0
# 计算GC含量
sapply(seqnames(Athaliana), function(x) letterFrequency(Athaliana[[x]], letters = "GC", 
    as.prob = TRUE))
## Chr1.G|C Chr2.G|C Chr3.G|C Chr4.G|C Chr5.G|C ChrM.G|C ChrC.G|C 
##   0.3568   0.3586   0.3632   0.3620   0.3593   0.4477   0.3629
但是BSgenome包试图提供一些简便的方法来处理基因组水平的BSgenome类数据,例如类似于apply函数的bsapply函数。要使用bsapply函数得先构建BSParams类对象,用于设置以下参数:
  • X:将要处理的BSgenome对象
  • FUN:将要对X中每条染色体进行处理函数
  • exclude:字符向量,表示排除的染色体名称
  • simplify:逻辑向量,它的意义和与sapply的simplify参数一样。默认为FALSE,bsapply返回GenomeData类数据;如果设置为TRUE,函数的结果尽量使用表格(数据框)类型显示
  • maskList:逻辑向量,表示各染色体使用掩膜的应用状态
  • motifList:字符向量,对序列进行掩膜的motif
  • userMask:RangesList对象,每个元素将用于对响应染色体进行掩膜处理,为用户提供额外的掩膜。
  • invertUserMask:TRUE/FALSE,表示是否对userMask进行反转。
FUN函数的其他参数可以在bsapply函数中以有名参数的方式进行设置。 下面代码的作用和前面sapply函数的应用是相同的:
op <- options()
options(digits = 4)
params <- new("BSParams", X = Athaliana, FUN = letterFrequency, simplify = TRUE)
bsapply(params, letters = "GC", as.prob = TRUE)
## Chr1.G|C Chr2.G|C Chr3.G|C Chr4.G|C Chr5.G|C ChrM.G|C ChrC.G|C 
##   0.3568   0.3586   0.3632   0.3620   0.3593   0.4477   0.3629
BSParams是S4类,对象数据可以修改,方便重复使用:
params@motifList <- "N"
bsapply(params, letters = "GC", as.prob = TRUE)
## Chr1.G|C Chr2.G|C Chr3.G|C Chr4.G|C Chr5.G|C ChrM.G|C ChrC.G|C 
##   0.3587   0.3586   0.3633   0.3620   0.3594   0.4477   0.3629
options(op)
params@FUN <- alphabetFrequency
bsapply(params, baseOnly = TRUE)
##          Chr1    Chr2    Chr3    Chr4    Chr5   ChrM  ChrC
## A     9709674 6315641 7484757 5940546 8621974 102464 48546
## C     5435374 3542973 4258333 3371349 4832253  82661 28496
## G     5421151 3520766 4262704 3356091 4858759  81609 27570
## T     9697113 6316348 7448059 5914038 8652238 100190 49866
## other     401      55      11       2       0      0     0
BSgenome包实现了BSgenome类对象的matchPWM,countPWM,vmatchPattern,vcountPattern,vmatchPDict和vcountPDict等操作,除继承了Biostrings中相应的方法外还增加了一些针对BSgenome类对象的参数设置(和bsapply函数参数类似):
vmatchPattern("ACGTGKC", Athaliana, fix = "subject", exclude = c("ChrC", "ChrM"))
## GRanges with 13745 ranges and 0 metadata columns:
##           seqnames               ranges strand
##              
##       [1]     Chr1       [ 1540,  1546]      +
##       [2]     Chr1       [ 8276,  8282]      +
##       [3]     Chr1       [12017, 12023]      +
##       [4]     Chr1       [14697, 14703]      +
##       [5]     Chr1       [34225, 34231]      +
##       ...      ...                  ...    ...
##   [13741]     Chr5 [26911361, 26911367]      -
##   [13742]     Chr5 [26915247, 26915253]      -
##   [13743]     Chr5 [26917155, 26917161]      -
##   [13744]     Chr5 [26923565, 26923571]      -
##   [13745]     Chr5 [26933617, 26933623]      -
##   ---
##   seqlengths:
##        Chr1     Chr2     Chr3     Chr4     Chr5     ChrM     ChrC
##    30427671 19698289 23459830 18585056 26975502   366924   154478
BSgenome包还提供了其他一些方法,比如用户自行构建BSgenome数据包和SNP的处理等。这些不在我的关心范围之内,没去了解。

你可能感兴趣的:(BioConductor)