- 删除我的电脑中“C盘瘦身专家”图标(流氓软件)
用联想电脑管家强制先卸载掉该软件,然后以管理员身份打开注册表(regedit)跳转到注册路径:计算机\HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explorer\MyComputer找到包含“C盘瘦身专家”得注册表项,然后直接删除,刷新桌面浏览器,就可以看到图标被删除了,国内做好软件不行,搞流氓软件倒是有一绝,正常从市场
- 百度文心大模型ERNIE全面解析
KENYCHEN奉孝
python实践大全AIERNIE人工智能后端文心大模型python
百度文心大模型ERNIE概述百度推出的文心大模型(ERNIE,EnhancedRepresentationthroughkNowledgeIntEgration)系列是结合知识增强技术的预训练大模型,涵盖自然语言处理(NLP)、跨模态、行业应用等多个方向。其开源版本为开发者提供了可商用的大模型能力支持。ERNIE的核心技术特点知识增强:通过多源知识图谱(如百度百科、专业领域数据)注入,提升模型对实
- ES6中实用且高频的前端核心知识点(10个) - 附示例
Web - Anonymous
ES6es6前端ecmascript
ES6:全称为ECMAScript6,是ECMAScript的第6版本,是JavaScript语言的下一代标准,2015年6月正式发布。ECMAScript是一种由Ecma国际(前身为欧洲计算机制造商协会,EuropeanComputerManufacturersAssociation)在标准ECMA-262中定义的脚本语言规范。目录1、块级作用域变量(let/const)2、箭头函数(简化thi
- 牛津通识读本| Psychology7
Rita2219
ActiveNotPassiveLearnersResearchshowsthatallthelookingandlisteningthatbabiesdoisorganizedmentallyintocertaintypesofknowledgefromearlyinlife.Listeningtoandlookingatpeopleteachesbabiesabouthowpeoplebeha
- ubuntu22.04.4锁定内核应对海光服务器升级内核无法启动问题
大新新大浩浩
运维知识-ubuntu服务器运维
文章目录一、场景二、机器信息1.内核信息2.CPU信息三、锁定内核总结ubuntu锁定内核的操作记录一、场景项目上来了几台海光的服务器,操作系统是ubuntu2204的,就尝试这安装服务,发现安装的时候内核会自动升级,升级之后新内核无法正常引导启动。进行锁内核的操作。二、机器信息1.内核信息hostnamectl:Statichostname:XXXIconname:computer-server
- 零知识证明学习
.NET跨平台
区块链零知识证明区块链
**零知识证明(Zero-KnowledgeProof,ZKP)**是一种密码学协议,允许一方(证明者)向另一方(验证者)证明某个声明或事实的真实性,而无需透露任何关于声明本身的信息。简单来说,证明者可以向验证者证明自己知道某个秘密信息(如密码、密钥等),但验证者并不会得到关于该信息的任何额外细节。零知识证明的三个核心特性完整性(Completeness):如果声明是真的,且证明者和验证者都遵循协
- 零知识证明原理
幻智星科技
密码学零知识证明区块链
零知识证明的三个性质我们在许多介绍零知识证明的文章中都能看到这样三个性质:Completeness——完备性Soundness——可靠性Zero-Knowledge——零知识通常,我们定义安全会采用这样一种方式,首先列出一些安全事件,然后说明:如果一个系统安全,那么列出来的安全事件都不会发生。借用密码学家BoazBarak的话,翻译一下,「零知识证明」并不是通过给出一个不允许发生的事件列表来定义,
- 动态知识图谱在GEO优化中的核心价值与实施路径
GEO优化助手
GEO优化AI搜索优化生成式引擎优化知识图谱人工智能ai搜索引擎
动态知识图谱在GEO优化中的核心价值与实施路径一、动态知识图谱的定义与技术背景1.定义与特性动态知识图谱(DynamicKnowledgeGraph,DKG)是一种基于图的语义网络,通过实体-关系-属性的三元组结构描述现实世界中的知识,并具备以下核心特性:实时性:通过API接口、爬虫技术或用户行为日志实时捕获最新数据(如产品参数更新、用户评价、市场趋势)。自适应性:利用机器学习算法(如图神经网络、
- 机器学习资源
SimpleUmbrella
以下是根据不同语言类型和应用领域收集的各类工具库,持续更新中。C通用机器学习Recommender-一个产品推荐的C语言库,利用了协同过滤.计算机视觉CCV-C-based/Cached/CoreComputerVisionLibrary,是一个现代化的计算机视觉库。VLFeat-VLFeat是开源的computervisionalgorithms库,有Matlabtoolbox。C++计算机视觉
- 半导体 CIM(计算机集成制造)系统
快乐的划水a
ATE设备制造集成测试
半导体CIM(ComputerIntegratedManufacturing,计算机集成制造)系统是半导体制造的“神经中枢”,通过整合硬件设备、软件系统和数据流转,实现从订单到成品的全流程自动化、信息化和智能化管理。其工作流程高度贴合半导体制造的复杂性(多工序、高精度、高洁净度、长周期),可分为订单接收与计划制定、生产准备、生产执行、实时监控与质量管控、成品测试与出货、数据闭环与持续改进六大核心阶
- 【1】计算机视觉方法(更新)
annaPresident
计算机视觉计算机视觉人工智能
1计算机是视觉的定义和任务计算机视觉(ComputerVision,CV)是人工智能领域的分支,旨在通过算法让计算机从图像或视频中提取信息、理解内容并做出决策。其核心任务是模拟人类视觉系统,实现场景理解、目标检测、图像分类等功能。2传统CV解决问题的步骤和方法步骤对图片、视频进行预处理,增强对比度,灰度化,变形等特征提取,边缘、角点、纹理等分割,通过阈值进行分割,分别处理形态学处理,通过膨胀、腐蚀
- 中国计算机学会(CCF)推荐学术会议-C(网络与信息安全):ACM ASIACCS 2026
爱思德学术
网络安全信息与通信密码学
ACMASIACCS2026BuildingonthesuccessofACMConferenceonComputerandCommunicationsSecurity(CCS),theACMSpecialInterestGrouponSecurity,Audit,andControl(SIGSAC)formallyestablishedtheannualACMAsiaConferenceonCo
- 三星数据被黑客泄露、罗马尼亚加油站网络遭勒索攻击|3月8日全球网络安全热点
腾讯安全
网络安全
安全资讯报告攻击英伟达的黑客泄露了三星数据据报道,攻击并泄露Nvidia的黑客组织LAPSUS$发布了它所描述的“三星机密源代码”。该黑客组织此前曾从Nvidia窃取机密信息。BleepingComputer报告称,LAPSUS$泄露了近190GB的数据,据称其中包括TrustZone环境使用的受信任小程序的源代码、最近三星设备的引导加载程序以及与三星帐户相关的技术等。LAPSUS$声称也泄露了“
- 机器学习算法解析:XGBoost与LightGBM
AI天才研究院
AI人工智能与大数据AI大模型应用入门实战与进阶AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
机器学习算法解析:XGBoost与LightGBM作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:XGBoost,LightGBM,高效特征选择,并行化训练,自动调参,弱分类器集成1.背景介绍1.1问题的由来随着数据科学和人工智能技术的发展,越来越多的问题需要利用机器学习算法进行解决。传统的一维决策树虽然直观且易于理解,但在面对高维度数据集时
- OpenCV —— contours_matrix_()_[]
大魔王(已黑化)
visionopencv人工智能计算机视觉
️️️️Takeyourtime!️️️️个人主页:大魔王所属专栏:魔王的修炼之路–Computervision如果你觉得这篇文章对你有帮助,请在文章结尾处留下你的点赞和关注,支持一下博主。同时记得收藏✨这篇文章,方便以后重新阅读。文章目录检测轮廓numpy创建矩阵与数组三种图像的区别及转换()与[]应用检测轮廓importcv2importnumpyasnpcv2.namedWi
- OpenCV —— color_matrix_numpy_mat_reshape
大魔王(已黑化)
visionopencvnumpy人工智能
️️️️Takeyourtime!️️️️个人主页:大魔王所属专栏:魔王的修炼之路–Computervision如果你觉得这篇文章对你有帮助,请在文章结尾处留下你的点赞和关注,支持一下博主。同时记得收藏✨这篇文章,方便以后重新阅读。文章目录颜色空间解释numpy与颜色空间图像的本质三种图像总结numpy本质Matnp.ndarray彩色图像灰度图像二值图像NumPy主要能干啥?re
- AI系统Spark原理与代码实战案例讲解
AI天才研究院
AI大模型企业级应用开发实战AgenticAI实战AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AI系统Spark原理与代码实战案例讲解作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:Spark、大数据处理、分布式计算、机器学习、数据挖掘、实时流处理1.背景介绍1.1问题的由来在大数据时代,海量数据的高效处理和分析已成为各行各业的迫切需求。传统的数据处理方式难以应对数据量激增、数据类型多样化以及实时性要求高等挑战。为了解决这些问题,Ap
- 网络分层模型和TCP/IP协议族 —— 以太网
zhangjingbibibi
网络分层模型和TCP/IP协议——以太网以太网其实讲的就是:怎么传IP协议讲的就是:解决往哪里传的问题UDP和TCP:解决可靠性的问题怎么传输的?最初是通过同轴电缆。image.png然后发现了一种算法来解决这个问题。CSMA/CD也就是载波监听多路访问/冲突检测我用大白话来讲解一下,大概就是这样的:一条同轴电缆上,串联着许多台计算机,如果说computerA想发送数据(data),那么它会这样做
- Day9: OpenCV学习(一)—— 图像基础
系列文章目录上一篇:Day8:Python工程化——模块、包文章目录系列文章目录前言一、安装和导入1.安装二、图像认识1.图像2.图像分类三、基础图像操作1.图像读取2.图像显示3.图像裁剪4.图形尺寸修改5.图像保存6.图像绘制7.视频捕获即显示总结前言OpenCV(OpenSourceComputerVisionLibrary)是一个开源的计算机视觉和机器学习软件库。由一系列C++类和函数构成
- 模型优化-------模型压缩
AI扶我青云志
人工智能模型优化
模型压缩是一种优化技术,目标是在尽量保留模型性能的前提下,减少模型的体积、计算成本和内存占用。特别适合模型部署在边缘设备、移动端、嵌入式系统等资源受限环境中。其中,“剪枝(Pruning)、量化(Quantization)和知识蒸馏(KnowledgeDistillation)”是最常用且研究最深入的三种方法。一、剪枝(Pruning)原理:剪枝的核心思想是去掉对模型输出影响较小的参数或结构,使得
- VI Server 操控 LabVIEW 工程
用VIServer自动创建并填充LabVIEW工程,借助Project.New创建工程,OpenWindow展示工程浏览器,经MyComputer获取工程项引用,通过AddFile等添加主VI、文件夹及内容,以RecursiveFileList递归取文件,最后用CloseReference规范释放资源,实现LabVIEW工程从无到有的程序化构建,适用于批量、标准化工程创建场景,相比手动操作更高效、
- 计算机视觉:人工智能的“眼睛”
人工智能教程
人工智能计算机视觉机器学习算法pytorchpython数据结构
前言在人工智能的众多领域中,计算机视觉(ComputerVision)无疑是其中最为引人注目的方向之一。它赋予了机器“看”的能力,使计算机能够像人类一样理解和解释视觉信息。从自动驾驶汽车到医疗影像诊断,从安防监控到虚拟现实,计算机视觉的应用场景无处不在,深刻地改变着我们的生活和工作方式。本文将深入探讨计算机视觉的核心技术、应用场景以及未来的发展趋势,帮助您全面了解这一充满活力的领域。一、计算机视觉
- OpenCV引擎:驱动实时应用开发的科技狂飙
芯作者
DD:计算机科学领域opencv计算机视觉
在人工智能与计算机视觉技术迅猛发展的今天,实时图像处理已成为工业自动化、自动驾驶、医疗诊断、增强现实等领域的核心技术需求。而**OpenCV(OpenSourceComputerVisionLibrary)**作为全球最活跃的开源计算机视觉库,正以其强大的算法生态、跨平台兼容性以及持续进化的架构设计,成为驱动实时应用开发的“数字引擎”。本文将深入剖析OpenCV如何通过技术创新突破实时处理的性能极
- Hadoop与图像识别与处理
AI天才研究院
AI大模型企业级应用开发实战AgenticAI实战AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Hadoop与图像识别与处理作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来在大数据时代,数据的爆炸性增长对数据处理技术提出了新的挑战。图像数据作为一种重要的数据形式,其处理和分析在许多领域中具有重要意义,如医疗影像分析、自动驾驶、安防监控等。然而,传统的图像处理方法在面对海量图像数据时显得力不从心。Hadoop作为一种分
- Python深度学习实践:LSTM与GRU在序列数据预测中的应用
AI智能应用
Python入门实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Python深度学习实践:LSTM与GRU在序列数据预测中的应用作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来序列数据预测是机器学习领域的一个重要研究方向,涉及时间序列分析、自然语言处理、语音识别等多个领域。序列数据具有时间依赖性,即序列中每个元素都受到前面元素的影响。传统的机器学习算法难以捕捉这种时间依赖性,而深度学习
- 简单英语语法2 - 可数与不可数名词
louyang
1可数名词这些名词代表的东西,可以被一个个数出来。pen,computer,bottle,spoon,desk,cup,television,chair,shoe,finger,flower,camera,stick,balloon,book,table,comb,etc.大多数名词的复数是-直接+spens,computers,bottles,spoons,desks,cups,televisi
- 中国计算机学会(CCF)推荐学术会议-C(人机交互与普适计算):COLLABORATECOM 2025
EAICollaborateCom2025,recognizedbytheprestigiousChinaComputerFederation(CCF)ranking,standsasaleadingglobaleventincomputerscience.AstheconferencewilltakeplaceinShanghai,China,theeventoffersauniqueplatf
- ARMv8架构
weizhideshenghuo
ARMarm
ARMarchitecturePE(processingelement):采取ARM架构的处理器RISC(reducedinstructionsetcomputer):精简指令集架构:AArch64:64位架构,地址和指令都是64位寄存器提供31个64位通用寄存器,X30用作过程链接寄存器提供1个64位程序计数器PC(programcounter),栈指针SPs(stackpointers),异常
- OpenCV 入门指南 —— 从环境搭建到图像处理
m0_74751715
opencv图像处理人工智能python
文章目录前言一、什么是OpenCV?二、环境准备与安装1.Python虚拟环境2.安装OpenCV3.验证安装三、读取与显示图像四、常见图像处理操作1.色彩空间转换2.图像平滑(模糊)3.边缘检测(Canny算法)4.在图像上绘制图形与文字五、视频与摄像头操作六、推荐学习路线七、参考资料前言在计算机视觉领域,OpenCV(OpenSourceComputerVisionLibrary)凭借其开源、
- Python机器学习教程
Python机器学习教程(MachineLearningwithPythonTutorial)PDFVersionQuickGuideResourcesJobSearchDiscussionPDF版本快速指南资源资源求职讨论区MachineLearning(ML)isbasicallythatfieldofcomputersciencewiththehelpofwhichcomputersyste
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比