多进程之Pool与多线程pool 及tqdm和for 并对比pandas处理结果

又叕又碰到这个多进程问题了,其实线程也行,下面再次进行demo测试

召回中遇到的,存储召回的items

For Video Recommendation in Deep learning QQ Group 277356808
 

For Visual in deep learning QQ Group 629530787
 

I'm here waiting for you
 

wanna have a date with someone in Beijing please join in the QQ Group 737813700

 

from multiprocessing import Process,Pool

Pool(32)与Pool(64)相比没有慢多少,一个是116s,一个是90s,因此保险考虑32为好

遇到一个问题:多进程Pool中

AttributeError: Can't pickle local object 'update_model..delete_copy_items'

下面小demo复现

Traceback (most recent call last):
  File "multiprocess_Process_Pool_.py", line 99, in 
    update_model()
  File "multiprocess_Process_Pool_.

你可能感兴趣的:(python,Process,Pool,多进程,多线程,for)