- 漫画人家隐私政策
呵呵一笑_e8f9
漫画人家APP(以下简称漫画人家)非常重视对您的个人隐私保护,有时候我们需要某些信息才能为您提供您请求的服务,本隐私声明解释了这些情况下的数据收集和使用情况。本隐私声明适用于漫画人家的所有相关服务,随着漫画人家服务范围的扩大,隐私声明的内容可由漫画人家随时更新,且毋须另行通知。更新后的隐私声明一旦在网页上公布即有效代替原来的隐私声明。我们收集哪些信息通常,您能在匿名的状态下访问漫画人家并获取信息。
- DeepSeek在大数据领域正掀起一场深刻的变革
智海观潮
AI大数据deepseekAI
随着人工智能技术的飞速发展,DeepSeek作为一款行业领先的开源大模型,正在大数据领域掀起一场深刻的变革。其强大的数据处理和分析能力,为各行业带来了新的机遇和变革,推动数据与业务的深度融合。以下是DeepSeek在大数据领域的一些典型的潜在应用:1.加速数据处理与分析流程在传统的大数据应用中,数据收集、预处理和分析往往是一个繁琐且耗时的工程。DeepSeek凭借其高效的算法和强大的计算能力,极大
- 数据分析概念和总结
小小少年Boy
参考:什么是数据分析?总结:决策=数据+分析数据分析的框架:明确分析目标、数据收集、数据清理、数据分析、数据报告、执行与反馈数据分析与数据挖掘,前者偏向于业务分析,后者偏向于数据库算法,借助数据来指导决策数据分析的框架1.首先是数据分析的目的性极强区别于数据挖掘的找关联、分类、聚类,数据分析更倾向于解决现实中的问题。我想解决什么问题?通过这次的分析能让我产生什么决策?比如是否在某个高校举办一场活动
- 云成本管理技术深度解析:核心原理与最佳实践
TechVision大咖圈
云成本管理成本优化云计算自动化运维预算控制资源管理
在这个"云"满天飞的时代,钱包也跟着飞?别慌!本文带你深入云成本管理的世界,让你的云账单不再成为"惊喜"。关键词:云成本管理、成本优化、云计算、资源管理、预算控制、自动化运维文章目录1.引言:云成本管理的重要性2.云成本管理核心原理2.1成本可见性原理2.2资源优化原理2.3预算控制原理3.技术架构深度解析3.1数据收集层3.2分析处理层3.3决策执行层4.最佳实践指南4.1成本监控体系建设4.2
- 面向个人量化交易者的数据收集与基础架构综合指南
m0_74842794
数据库数据挖掘云计算
引言报告目的本报告旨在为寻求进入量化交易领域的个人交易者,提供一份权威且全面的专家级指南,内容聚焦于数据收集、存储与管理的关键环节。本报告将直接回应您关于所需数据类型、数据来源(特别是针对中国市场)以及如何实现关系型与时序混合数据库架构的具体问题。数据驱动的必要性在量化交易领域,数据的质量、广度和结构不仅仅是策略的输入,更是竞争优势的核心来源1。一个稳健、高效的数据基础设施是所有成功策略赖以建立的
- 数据赋能(335)——技术平台——技术赋能
lh1793
数据
概述技术赋能原则在数据赋能中占据核心地位。它确保了数据分析、处理和应用过程中的高效、准确和可靠,为业务决策提供了坚实的技术基础。原则定义数据技术赋能原则:在组织运营和业务决策中,以数据技术为核心,通过数据收集、分析、处理和应用,推动业务创新、优化运营和提升决策质量以下是数据技术赋能原则的具体分点表示:战略对齐:数据技术的应用应与组织的战略目标紧密对齐,确保技术投资能够直接支持业务增长和竞争优势的建
- 机器学习概述
炀水
机器学习人工智能
一、机器学习算法与流程(一)、机器学习的主要流程:1.明确分析目标,2.数据收集,3.数据预处理,4.建模分析,5.结果评估,6.部署使用以及学习更新。1.明确分析目标:客观反映用户需求,通过对各类人群的深入分析,为相关部门制订资费、服务、市场策略提供基础。2.数据收集:收集相关的数据,充足、全面的高质量数据是机器学习的基础。3.数据预处理:数据可能存在着噪声、不一致、异常、个人隐私保护等各类问题
- 打造专属知识库:手把手教你构建RAG系统
RAG通常指的是"Retrieval-AugmentedGeneration",即“检索增强的生成”。这是一种结合了检索(Retrieval)和生成(Generation)的机器学习模型,通常用于自然语言处理任务,如文本生成、问答系统等。我们通过一下几个步骤来完成一个基于京东云官网文档的RAG系统数据收集建立知识库向量检索提示词与模型数据收集数据的收集再整个RAG实施过程中无疑是最耗人工的,涉及到
- Python爬虫打怪升级:数据获取疑难全解析
女码农的重启
python爬虫开发语言
一、引言**在大数据时代,数据就是价值的源泉。而Python爬虫,作为数据获取的得力助手,凭借Python简洁的语法和丰富强大的库,在众多领域发挥着重要作用。无论是电商领域的价格监测、市场调研中的数据收集,还是学术研究里的文献获取,Python爬虫都能大显身手。例如,通过爬取电商平台的商品信息,我们可以分析市场趋势,为企业决策提供有力支持;在学术研究中,利用爬虫获取大量文献资料,能帮助研究人员快速
- Python 数据分析实战:洞察 2025 热门行业发展新态势
目录一、案例背景二、代码实现2.1数据收集2.2数据探索性分析2.3数据清洗2.4数据分析2.4.1人工智能技术热点挖掘2.4.2汽车行业市场趋势分析2.4.3能源行业绿色能源发展预测三、主要的代码难点解析3.1数据收集3.2数据清洗-汽车市场数据异常值处理3.3数据分析-人工智能技术热点挖掘3.4数据分析-汽车行业市场趋势分析3.5数据可视化四、可能改进的代码4.1数据收集改进4.2数据清洗改进
- 基于Opencv的手势识别
双马尾为什么是神
opencv人工智能计算机视觉
thumb目录项目背景项目概览功能实现分类器选择数据收集与处理数据增强与傅里叶描述子计算SVM训练GUI设计未来展望项目背景回首过去一年半的大学时光,我深感自己过于安逸。没有明确的目标,对于学习也不太上心。倘若继续这样浑浑噩噩过下去,即便以后只想得过且过地过普通生活,最终结果恐怕难遂人愿。“取乎其上,得乎其中;取乎其中,得乎其下;取乎其下,则无所得矣。”于是乎我制定了与未来展望相匹配的学习路径,哪
- 深度学习的图像分类项目在制造业场景下的数据需求量估算及实现方案(数据收集是The more the better 吗?)
shiter
人工智能系统解决方案与技术架构深度学习分类人工智能
文章大纲一、数据需求的关键影响因素二、无先验知识场景的数据需求估算优化策略与技术方案三、有先验知识场景的数据需求估算1.迁移学习(TransferLearning)2.少样本学习(Few-ShotLearning)3.预训练-微调范式四、实现方案与技术路线1.数据策略层2.模型架构层3.训练优化技术五、结论与实践建议无先验知识场景有先验知识场景✅**正确性校验**⚠️**可落地性勘误与补充****
- Python 机器学习实战:基于 Scikit-learn
大力出奇迹985
python机器学习scikit-learn
本文围绕《Python机器学习实战:基于Scikit-learn的项目开发》展开,先介绍Scikit-learn库的基础特性与优势,再阐述机器学习项目开发的完整流程,包括数据收集与预处理、模型选择与训练、评估与优化等。通过具体实战案例,展示如何运用Scikit-learn解决分类、回归等问题,最后总结学习要点与未来学习方向,为读者提供系统的实战指导,助力快速掌握基于Scikit-learn的机器学
- 想进大厂?LLMs 10道面试题提前看,有问有答,图文详解!
AI大模型-大飞
人工智能大模型chatgpt产品经理AI程序员大模型面试题
一、微调与优化21、LLM的微调流程是什么?微调(Fine-tuning)LLMs指的是在特定任务或数据上对预训练好的模型进行进一步训练,使其能更好地适应目标场景的过程,其主要流程如下:数据准备:数据收集:根据目标任务收集高质量、有代表性的数据;数据预处理:对原始数据进行清洗,如去除噪声、重复项、不相关内容等。根据模型输入要求对数据进行格式化;数据划分:将数据分为训练集、验证集和测试集,为后续模型
- 【经营管理体系】企业经营管理
flyair_China
大数据
一、企业管理1.1企业管理体系企业管理的核心内容可归纳为9大类别、35个细分领域,覆盖“人、财、物、事、效”五大维度。以下是系统化分类及关键要点:战略与决策管理战略规划方法:SWOT分析、波士顿矩阵输出:3-5年战略路线图目标分解工具:OKR(目标与关键成果)、BSC(平衡计分卡)决策机制流程:数据收集→可行性分析→风险评估→集体决议创新管理案例:华为“蓝军机制”(专门质疑战略漏洞)组织与人力管理
- 如何使用橙武低代码平台进行数据收集与分析:运营人员的月度报告生成实例
橙武科技
AIdeepseek低代码低代码人工智能ai
一、背景与目标假设我们有一个运营人员,他的任务是每月收集和整理分公司的月度订单数据,包括:订单量:每个分公司在该月的订单总数。总金额:该月订单的总销售金额。退单量:该月退货的订单数。退单金额:退货订单的总金额。退单原因Top1:退单中最常见的原因。这些数据需要运营人员手动从各个分公司的系统中收集,然后整合成一个月度报告,分析并发现潜在问题,如哪些分公司订单量下降、哪些退单原因需要关注。通过橙武低代
- 边缘计算物联网关如何优化数据处理流程-天拓四方
职业影评人
边缘计算物联网人工智能
在物联网技术日新月异的今天,数据的产生、传输与处理已成为推动行业智能化转型的关键。边缘计算物联网关,作为这一生态系统中的核心组件,正以其独特的优势,在数据处理效率、实时性、安全性及成本效益等方面展现出非凡的潜力。本文将聚焦于边缘计算物联网关如何优化数据处理流程,深入探讨其技术原理、应用优势及未来发展趋势。一、边缘计算物联网关概述边缘计算物联网关,简而言之,是位于物联网设备边缘,负责数据收集、初步处
- 酒厂生产信息化系统方案
liu854046222
技术解决方案大数据人工智能
一、背景目标白酒作为中国传统的高度酒精饮料,其生产过程复杂且历史悠久。随着消费者对高品质白酒的需求不断增长,以及食品安全和质量监管的日益严格,酒厂面临着提升产品品质、确保生产安全、提高生产效率和降低成本的多重挑战。为了满足市场需求,酒厂需要对原材料进行严格分析和追溯,优化生产流程,并通过数据收集和分析来持续改进生产工艺。目标:原材料优化:通过对原料的深入分析,选择最佳的原料组合,确保白酒的独特风味
- 大模型在2型糖尿病性酮症预测及临床方案制定中的应用研究
LCG元
围术期危险因子预测模型研究人工智能python深度学习
目录一、引言1.1研究背景与意义1.2研究目的与创新点二、2型糖尿病性酮症相关理论基础2.12型糖尿病性酮症概述2.1.1定义与发病机制2.1.2临床表现与危害2.1.3诊断标准与鉴别诊断2.2大模型技术原理及在医疗领域的应用潜力2.2.1大模型的基本原理和特点2.2.2在医疗领域的应用现状和优势三、大模型在2型糖尿病性酮症术前风险预测的应用3.1数据收集与预处理3.1.1数据来源3.1.2数据清
- 网络爬虫:技术原理、应用场景与合法使用全攻略
程序小武
python爬虫入门爬虫网络
爬虫是什么?网络爬虫(WebScraping或WebCrawling)是一种通过自动化方式从网站上抓取公开数据的程序。它通过模拟用户在浏览器中浏览网页的过程,访问网页、提取信息,并将数据保存到本地系统中。爬虫技术广泛应用于搜索引擎、数据收集、市场分析、信息聚合等多个领域。爬虫能做什么?数据收集爬虫可以高效地从互联网上的大量网站收集信息。比如,抓取新闻网站上的文章内容、商品电商平台的价格与库存数据、
- 一文读懂 AI 模型训练流程
AI赋能
人工智能人工智能
一文读懂AI模型训练流程在当今数字化时代,AI技术发展得如火如荼,广泛应用于各个领域,而这背后离不开AI模型的训练。AI模型训练流程就像是一场精心策划的“智慧锻造之旅”,每一步都至关重要。今天,咱们就来深入了解一下这个神秘的过程。数据准备:夯实基础数据,堪称AI模型训练的“原材料”,其质量直接决定了最终模型的性能。这就好比建造一座高楼,只有用优质的砖块、钢筋等材料,才能让大楼稳固结实。数据收集我们
- 使用Python快速读取PDF中的表单数据
nuclear2011
PythonPDFpythonpdf
目录安装PythonPDF库Python读取PDF表单数据1、一次性读取多种PDF表单的数据2、读取特定PDF表单的数据PDF表单是常见的数据收集工具,用于收集用户或客户提供的信息。通过编程的方式读取PDF表单的数据可以准确获取用户信息,避免手动输入或转录,从而节省时间和劳动力,同时降低数据输入错误的风险。这篇文章将探讨如何使用Python快速读取PDF表单数据。安装PythonPDF库Pytho
- 基于大模型的颅前窝底脑膜瘤诊疗全流程研究报告
LCG元
围术期危险因子预测模型研究人工智能
目录一、引言1.1研究背景与目的1.2国内外研究现状1.3研究意义与创新点二、颅前窝底脑膜瘤概述2.1定义与分类2.2发病机制与病因2.3临床表现与症状三、大模型预测原理与方法3.1大模型介绍3.2数据收集与预处理3.3模型训练与验证四、术前预测与准备4.1肿瘤特征预测4.2手术风险预测4.3术前检查与评估4.4患者沟通与教育五、手术方案制定5.1手术入路选择5.2手术步骤规划5.3术中监测与应急
- 【机器学习笔记 Ⅱ】10 完整周期
机器学习的完整生命周期(End-to-EndPipeline)机器学习的完整周期涵盖从问题定义到模型部署的全过程,以下是系统化的步骤分解和关键要点:1.问题定义(ProblemDefinition)目标:明确业务需求与机器学习任务的匹配性。关键问题:这是分类、回归、聚类还是强化学习问题?成功的标准是什么?(如准确率>90%、降低10%成本)输出:项目目标文档(含评估指标)。2.数据收集(DataC
- SFT(监督微调)详解:零基础入门到精通,一篇详细的入门教程!
AGI大模型老王
人工智能程序员大模型学习AI大模型大模型微调SFT
文章目录具体步骤如下:应用场景优点举例步骤1:预训练模型的选择步骤2:数据收集与标注步骤3:数据预处理步骤4:数据集划分步骤5:加载预训练模型步骤6:数据编码步骤7:创建数据加载器步骤8:定义训练过程步骤9:模型评估步骤10:模型保存零基础入门AI大模型一、全套AGI大模型学习路线二、640套AI大模型报告合集三、AI大模型经典PDF籍四、AI大模型商业化落地方案学习计划:资料领取SFT(监督微调
- 产品经理-埋点分析文档(DRD) - AxureMost
AxureMost
NPDP产品经理开源知识库产品经理
埋点分析文档(DRD)-AxureMost数据埋点文档是产品、数据分析师和开发人员之间沟通的桥梁,用于明确需要收集哪些用户行为数据,以及如何收集这些数据。它详细记录了数据埋点的需求、规范和实施细节,确保数据收集的准确性和一致性。以下是数据埋点文档的定义、内容、作用以及规范的详细说明:定义数据埋点文档是一种技术文档,它详细描述了在产品中需要埋点的位置、事件类型、数据字段、统计逻辑等信息。它是产品需求
- 大模型在蛛网膜下腔出血预测与诊疗方案制定中的应用研究
目录一、引言1.1研究背景与意义1.2研究目的与创新点二、蛛网膜下腔出血概述2.1定义与分类2.2发病原因及危险因素2.3临床表现与诊断依据三、大模型技术原理与应用现状3.1大模型基本原理3.2在医疗领域的应用案例3.3应用于蛛网膜下腔出血预测的可行性分析四、大模型预测蛛网膜下腔出血的具体方案4.1术前风险预测4.1.1数据收集与预处理4.1.2模型构建与训练4.1.3预测指标与评估4.2术中情况
- 数据分析全流程:从收集到可视化的高效实战
晨曦543210
python
1.数据收集来源:数据库、API、传感器、日志文件、社交媒体、问卷调查等。工具:Python(requests、Scrapy)、SQL、Excel、Kafka(实时流数据)。2.数据清洗处理缺失、重复、错误或不一致的数据:缺失值:删除、填充(均值/中位数/众数)、插值或预测。异常值:使用箱线图、Z-score或IQR方法检测并处理。格式标准化:统一日期、单位、文本格式(如大小写、去除空格)。去重:
- 【python实用小脚本-127】基于 Python 的 Google 图片爬取工具:实现高效图片数据收集
Kyln.Wu
Pythonpython开发语言
引言在数据科学、机器学习和多媒体应用中,图片数据的收集是一个常见且重要的任务。Google图片是一个丰富的图片资源库,能够为各种项目提供大量的图片数据。本文将介绍一个基于Python的Google图片爬取工具,它能够自动化地从Google图片搜索结果中下载图片。该工具主要利用了Python的selenium、BeautifulSoup、urllib和argparse库,结合了网页自动化和数据解析技
- 基于大模型预测胸椎管狭窄诊疗全流程的研究报告
LCG元
围术期危险因子预测模型研究人工智能机器学习
目录一、引言1.1研究背景与意义1.2研究目的与创新点1.3研究方法与数据来源二、胸椎管狭窄症概述2.1疾病定义与分类2.2病因与发病机制2.3流行病学特征三、大模型技术原理与应用现状3.1大模型基本原理3.2在医疗领域的应用案例3.3用于胸椎管狭窄预测的优势四、术前大模型预测4.1预测指标与数据收集4.2模型训练与验证4.3预测结果分析与临床意义五、基于预测的手术方案制定5.1手术方式选择依据5
- 微信开发者验证接口开发
362217990
微信 开发者 token 验证
微信开发者接口验证。
Token,自己随便定义,与微信填写一致就可以了。
根据微信接入指南描述 http://mp.weixin.qq.com/wiki/17/2d4265491f12608cd170a95559800f2d.html
第一步:填写服务器配置
第二步:验证服务器地址的有效性
第三步:依据接口文档实现业务逻辑
这里主要讲第二步验证服务器有效性。
建一个
- 一个小编程题-类似约瑟夫环问题
BrokenDreams
编程
今天群友出了一题:
一个数列,把第一个元素删除,然后把第二个元素放到数列的最后,依次操作下去,直到把数列中所有的数都删除,要求依次打印出这个过程中删除的数。
&
- linux复习笔记之bash shell (5) 关于减号-的作用
eksliang
linux关于减号“-”的含义linux关于减号“-”的用途linux关于“-”的含义linux关于减号的含义
转载请出自出处:
http://eksliang.iteye.com/blog/2105677
管道命令在bash的连续处理程序中是相当重要的,尤其在使用到前一个命令的studout(标准输出)作为这次的stdin(标准输入)时,就显得太重要了,某些命令需要用到文件名,例如上篇文档的的切割命令(split)、还有
- Unix(3)
18289753290
unix ksh
1)若该变量需要在其他子进程执行,则可用"$变量名称"或${变量}累加内容
什么是子进程?在我目前这个shell情况下,去打开一个新的shell,新的那个shell就是子进程。一般状态下,父进程的自定义变量是无法在子进程内使用的,但通过export将变量变成环境变量后就能够在子进程里面应用了。
2)条件判断: &&代表and ||代表or&nbs
- 关于ListView中性能优化中图片加载问题
酷的飞上天空
ListView
ListView的性能优化网上很多信息,但是涉及到异步加载图片问题就会出现问题。
具体参看上篇文章http://314858770.iteye.com/admin/blogs/1217594
如果每次都重新inflate一个新的View出来肯定会造成性能损失严重,可能会出现listview滚动是很卡的情况,还会出现内存溢出。
现在想出一个方法就是每次都添加一个标识,然后设置图
- 德国总理默多克:给国人的一堂“震撼教育”课
永夜-极光
教育
http://bbs.voc.com.cn/topic-2443617-1-1.html德国总理默多克:给国人的一堂“震撼教育”课
安吉拉—默克尔,一位经历过社会主义的东德人,她利用自己的博客,发表一番来华前的谈话,该说的话,都在上面说了,全世界想看想传播——去看看默克尔总理的博客吧!
德国总理默克尔以她的低调、朴素、谦和、平易近人等品格给国人留下了深刻印象。她以实际行动为中国人上了一堂
- 关于Java继承的一个小问题。。。
随便小屋
java
今天看Java 编程思想的时候遇见一个问题,运行的结果和自己想想的完全不一样。先把代码贴出来!
//CanFight接口
interface Canfight {
void fight();
}
//ActionCharacter类
class ActionCharacter {
public void fight() {
System.out.pr
- 23种基本的设计模式
aijuans
设计模式
Abstract Factory:提供一个创建一系列相关或相互依赖对象的接口,而无需指定它们具体的类。 Adapter:将一个类的接口转换成客户希望的另外一个接口。A d a p t e r模式使得原本由于接口不兼容而不能一起工作的那些类可以一起工作。 Bridge:将抽象部分与它的实现部分分离,使它们都可以独立地变化。 Builder:将一个复杂对象的构建与它的表示分离,使得同
- 《周鸿祎自述:我的互联网方法论》读书笔记
aoyouzi
读书笔记
从用户的角度来看,能解决问题的产品才是好产品,能方便/快速地解决问题的产品,就是一流产品.
商业模式不是赚钱模式
一款产品免费获得海量用户后,它的边际成本趋于0,然后再通过广告或者增值服务的方式赚钱,实际上就是创造了新的价值链.
商业模式的基础是用户,木有用户,任何商业模式都是浮云.商业模式的核心是产品,本质是通过产品为用户创造价值.
商业模式还包括寻找需求
- JavaScript动态改变样式访问技术
百合不是茶
JavaScriptstyle属性ClassName属性
一:style属性
格式:
HTML元素.style.样式属性="值";
创建菜单:在html标签中创建 或者 在head标签中用数组创建
<html>
<head>
<title>style改变样式</title>
</head>
&l
- jQuery的deferred对象详解
bijian1013
jquerydeferred对象
jQuery的开发速度很快,几乎每半年一个大版本,每两个月一个小版本。
每个版本都会引入一些新功能,从jQuery 1.5.0版本开始引入的一个新功能----deferred对象。
&nb
- 淘宝开放平台TOP
Bill_chen
C++c物流C#
淘宝网开放平台首页:http://open.taobao.com/
淘宝开放平台是淘宝TOP团队的产品,TOP即TaoBao Open Platform,
是淘宝合作伙伴开发、发布、交易其服务的平台。
支撑TOP的三条主线为:
1.开放数据和业务流程
* 以API数据形式开放商品、交易、物流等业务;
&
- 【大型网站架构一】大型网站架构概述
bit1129
网站架构
大型互联网特点
面对海量用户、海量数据
大型互联网架构的关键指标
高并发
高性能
高可用
高可扩展性
线性伸缩性
安全性
大型互联网技术要点
前端优化
CDN缓存
反向代理
KV缓存
消息系统
分布式存储
NoSQL数据库
搜索
监控
安全
想到的问题:
1.对于订单系统这种事务型系统,如
- eclipse插件hibernate tools安装
白糖_
Hibernate
eclipse helios(3.6)版
1.启动eclipse 2.选择 Help > Install New Software...> 3.添加如下地址:
http://download.jboss.org/jbosstools/updates/stable/helios/ 4.选择性安装:hibernate tools在All Jboss tool
- Jquery easyui Form表单提交注意事项
bozch
jquery easyui
jquery easyui对表单的提交进行了封装,提交的方式采用的是ajax的方式,在开发的时候应该注意的事项如下:
1、在定义form标签的时候,要将method属性设置成post或者get,特别是进行大字段的文本信息提交的时候,要将method设置成post方式提交,否则页面会抛出跨域访问等异常。所以这个要
- Trie tree(字典树)的Java实现及其应用-统计以某字符串为前缀的单词的数量
bylijinnan
java实现
import java.util.LinkedList;
public class CaseInsensitiveTrie {
/**
字典树的Java实现。实现了插入、查询以及深度优先遍历。
Trie tree's java implementation.(Insert,Search,DFS)
Problem Description
Igna
- html css 鼠标形状样式汇总
chenbowen00
htmlcss
css鼠标手型cursor中hand与pointer
Example:CSS鼠标手型效果 <a href="#" style="cursor:hand">CSS鼠标手型效果</a><br/>
Example:CSS鼠标手型效果 <a href="#" style=&qu
- [IT与投资]IT投资的几个原则
comsci
it
无论是想在电商,软件,硬件还是互联网领域投资,都需要大量资金,虽然各个国家政府在媒体上都给予大家承诺,既要让市场的流动性宽松,又要保持经济的高速增长....但是,事实上,整个市场和社会对于真正的资金投入是非常渴望的,也就是说,表面上看起来,市场很活跃,但是投入的资金并不是很充足的......
 
- oracle with语句详解
daizj
oraclewithwith as
oracle with语句详解 转
在oracle中,select 查询语句,可以使用with,就是一个子查询,oracle 会把子查询的结果放到临时表中,可以反复使用
例子:注意,这是sql语句,不是pl/sql语句, 可以直接放到jdbc执行的
----------------------------------------------------------------
- hbase的简单操作
deng520159
数据库hbase
近期公司用hbase来存储日志,然后再来分析 ,把hbase开发经常要用的命令找了出来.
用ssh登陆安装hbase那台linux后
用hbase shell进行hbase命令控制台!
表的管理
1)查看有哪些表
hbase(main)> list
2)创建表
# 语法:create <table>, {NAME => <family&g
- C语言scanf继续学习、算术运算符学习和逻辑运算符
dcj3sjt126com
c
/*
2013年3月11日20:37:32
地点:北京潘家园
功能:完成用户格式化输入多个值
目的:学习scanf函数的使用
*/
# include <stdio.h>
int main(void)
{
int i, j, k;
printf("please input three number:\n"); //提示用
- 2015越来越好
dcj3sjt126com
歌曲
越来越好
房子大了电话小了 感觉越来越好
假期多了收入高了 工作越来越好
商品精了价格活了 心情越来越好
天更蓝了水更清了 环境越来越好
活得有奔头人会步步高
想做到你要努力去做到
幸福的笑容天天挂眉梢 越来越好
婆媳和了家庭暖了 生活越来越好
孩子高了懂事多了 学习越来越好
朋友多了心相通了 大家越来越好
道路宽了心气顺了 日子越来越好
活的有精神人就不显
- java.sql.SQLException: Value '0000-00-00' can not be represented as java.sql.Tim
feiteyizu
mysql
数据表中有记录的time字段(属性为timestamp)其值为:“0000-00-00 00:00:00”
程序使用select 语句从中取数据时出现以下异常:
java.sql.SQLException:Value '0000-00-00' can not be represented as java.sql.Date
java.sql.SQLException: Valu
- Ehcache(07)——Ehcache对并发的支持
234390216
并发ehcache锁ReadLockWriteLock
Ehcache对并发的支持
在高并发的情况下,使用Ehcache缓存时,由于并发的读与写,我们读的数据有可能是错误的,我们写的数据也有可能意外的被覆盖。所幸的是Ehcache为我们提供了针对于缓存元素Key的Read(读)、Write(写)锁。当一个线程获取了某一Key的Read锁之后,其它线程获取针对于同
- mysql中blob,text字段的合成索引
jackyrong
mysql
在mysql中,原来有一个叫合成索引的,可以提高blob,text字段的效率性能,
但只能用在精确查询,核心是增加一个列,然后可以用md5进行散列,用散列值查找
则速度快
比如:
create table abc(id varchar(10),context blog,hash_value varchar(40));
insert into abc(1,rep
- 逻辑运算与移位运算
latty
位运算逻辑运算
源码:正数的补码与原码相同例+7 源码:00000111 补码 :00000111 (用8位二进制表示一个数)
负数的补码:
符号位为1,其余位为该数绝对值的原码按位取反;然后整个数加1。 -7 源码: 10000111 ,其绝对值为00000111 取反加一:11111001 为-7补码
已知一个数的补码,求原码的操作分两种情况:
- 利用XSD 验证XML文件
newerdragon
javaxmlxsd
XSD文件 (XML Schema 语言也称作 XML Schema 定义(XML Schema Definition,XSD)。 具体使用方法和定义请参看:
http://www.w3school.com.cn/schema/index.asp
java自jdk1.5以上新增了SchemaFactory类 可以实现对XSD验证的支持,使用起来也很方便。
以下代码可用在J
- 搭建 CentOS 6 服务器(12) - Samba
rensanning
centos
(1)安装
# yum -y install samba
Installed:
samba.i686 0:3.6.9-169.el6_5
# pdbedit -a rensn
new password:123456
retype new password:123456
……
(2)Home文件夹
# mkdir /etc
- Learn Nodejs 01
toknowme
nodejs
(1)下载nodejs
https://nodejs.org/download/ 选择相应的版本进行下载 (2)安装nodejs 安装的方式比较多,请baidu下
我这边下载的是“node-v0.12.7-linux-x64.tar.gz”这个版本 (1)上传服务器 (2)解压 tar -zxvf node-v0.12.
- jquery控制自动刷新的代码举例
xp9802
jquery
1、html内容部分 复制代码代码示例: <div id='log_reload'>
<select name="id_s" size="1">
<option value='2'>-2s-</option>
<option value='3'>-3s-</option