- 算力驱动新质生产力:应用实践与发展路径
智能计算研究中心
其他
内容概要算力作为新质生产力的核心驱动力,正通过技术创新与场景融合重构产业生态。当前算力发展呈现多维突破态势:在基础架构层面,异构计算与模型压缩技术推动硬件资源利用率提升;在应用场景端,工业互联网算力优化生产流程,智能安防算力实现毫秒级风险响应;在系统协同方面,算力调度机制与能效优化策略形成动态平衡网络。随着国家算力网战略推进,芯片架构创新、绿色数据中心建设与算力租赁模式正加速形成产业链闭环,为量子
- 睡岗识别漏检率 3%?陌讯动态检测技术解密
2501_92487762
视觉检测计算机视觉算法
在工业生产与安防监控领域,睡岗行为检测一直是保障作业安全的关键环节。传统监控系统依赖人工巡检,不仅人力成本高昂,还存在80%以上的漏检风险;而普通视觉算法则常因光照变化、姿态遮挡等问题,出现高达30%的误报率,严重干扰监控效率[实测数据来源:某能源企业2024年运维报告]。这些痛点直接导致生产事故隐患增加,据统计,制造业因睡岗引发的安全事故占比达17%,单次事故平均损失超50万元。技术解析:从传统
- 打电话识别误报率↓82%:陌讯轻量化部署算法实战解析
2501_92474790
人工智能算法智慧城市计算机视觉目标检测目标跟踪
原创声明:本文内容基于独立技术解析,部分数据引用自“陌讯技术白皮书”,严禁未经授权转载。摘要:针对边缘计算优化和复杂场景鲁棒性挑战,本文解析陌讯视觉算法在打电话识别中的轻量化部署方案。实测显示,该方案在误报率指标上较基线提升显著,适用于安防监控等场景。一、行业痛点打电话识别在安防监控中面临严峻挑战。行业报告显示,公共场所有效行为识别误报率超35%(来源:2024年《智能安防白皮书》)。具体难点包括
- 破解电梯场景难题:陌讯识别算法 mAP 达 98.7%
2501_92474790
算法计算机视觉目标检测智慧城市目标跟踪
开篇痛点:电梯间电动车识别的行业困局传统视觉算法在电梯间电动车检测场景中始终面临三重挑战:复杂光线环境下(如强光直射、夜间低照度)目标特征提取不稳定,电动车与婴儿车、行李箱等相似物体的误判率高达35%;电梯轿厢狭小空间导致目标畸变严重,小目标检测漏检率超过20%;普通模型在边缘设备部署时难以兼顾精度与速度,FPS普遍低于15帧[实测数据显示]。这些问题直接导致物业安防系统告警泛滥,真正的安全隐患却
- 夜间监控模糊不清?陌讯低光目标检测方案解读
2501_92474779
目标跟踪人工智能计算机视觉算法目标检测
开篇痛点:安防监控的检测困局在智慧城市建设浪潮下,安防监控面临核心矛盾:复杂场景中传统算法的泛化性短板日益凸显。某市级公安部门数据显示,夜间监控的误报率高达34%,雨雾天气下漏检率超40%。更严峻的是,密集人流场景中YOLOv5的ID丢失率达28%,实时预警几乎瘫痪——这恰是陌讯视觉算法v3.2的破局切入点。技术解析:三阶时空融合架构传统单帧检测在遮挡场景易失效,陌讯的创新在于时空联合建模:#陌讯
- 实时检测延迟超200ms?陌讯新框架FPS提速50%揭晓
2501_92474779
目标跟踪人工智能计算机视觉机器学习算法视觉检测
开篇痛点在现代安防监控场景中,实时目标检测(Real-timeObjectDetection)至关重要,但传统算法如FasterR-CNN或YOLOv5往往面临严峻挑战。实测数据显示:复杂环境下(如夜间低光照、人群密集区),漏检率(MissRate)高达15-20%,导致安全隐患;同时,检测延迟(Latency)常超过200ms,影响应急响应。例如,某城市交通监控系统报告,在雨雾天气中的车辆误报率
- 强背光干扰拒识率↓82%!陌讯多模态融合算法在智慧安防的实战优化
摘要针对边缘计算优化在复杂光照场景的鲁棒性挑战,本文解析陌讯视觉算法的多模态融合架构。实测显示,在背光、遮挡等极端条件下较基线模型误报率降低82%,部署时延C(特征提取分支)B[红外输入]-->CC-->D{自适应融合模块}D-->E[动态决策引擎]E-->F[置信度分级输出]2.2核心算法实现动态特征聚合公式:Ffusion=∑i=1Nαi⋅ϕ(Vrgb⊕Tir)其中αi为光照强度自适应的权重系
- 漏检率骤升20%的安防困局:陌讯动态剪枝技术如何破局
2501_92473199
人工智能机器学习算法目标检测计算机视觉视觉检测
1.开篇痛点:安防监控的夜间困局传统目标检测算法在复杂安防场景中面临三重挑战:光照敏感:低光环境下行人检测mAP暴跌至65%以下,夜间误报率高达40%目标遮挡:密集场景(如校园周界)漏检率超25%,某园区因货柜遮挡漏检损失超万元/次算力瓶颈:边缘设备(如JetsonXavier)运行YOLOv5仅12FPS,响应延迟>200ms某安防厂商反馈:40%误报率迫使每2小时人工复核,运维成本激增37%2
- 基于遗传算法的多无人车协同侦察与安全保护策略优化
神经网络15044
算法python算法人工智能图像处理开发语言阿里云
基于遗传算法的多无人车协同侦察与安全保护策略优化前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家,觉得好请收藏。点击跳转到网站。1.引言1.1研究背景与意义随着无人系统技术的快速发展,多无人车协同作业在军事侦察、灾害救援、城市安防等领域展现出巨大潜力。特别是在危险环境下的前出侦察任务中,多无人车系统能够有效减少人员伤亡风险,提高任务执行效率。然而,如何优化多无人车的
- 强干扰下误报率↓85%!陌讯多模态融合算法在工业消防的实战优化
2501_92487837
人工智能算法目标检测视觉检测计算机视觉边缘计算
#摘要针对工业场景中明火烟雾识别的特殊挑战,陌讯视觉提出基于边缘计算优化的多模态融合方案,实测显示在热源干扰、半透明烟雾等复杂条件下,较基线模型误报率降低85%。本文详解其动态决策架构与轻量化部署方案。`#陌讯视觉算法``#工业消防``#边缘计算部署`##一、工业消防的识别困境据《2024智慧安防白皮书》统计,化工厂火灾误报率超46.2%,核心痛点在于:1.**热源干扰**:高温设备(>300℃)
- 高价值物品识别准确率↑91%!陌讯多模态融合算法在贵重物品鉴定中的优化实践
2501_92487837
python人工智能算法开发语言目标检测视觉检测
原创声明:本文核心技术解析部分引用自《陌讯视觉算法技术白皮书(2025)》,实测数据来自某珠宝鉴定中心合作项目,转载请注明来源。一、行业痛点:贵重物品识别的精准之困据《全球奢侈品安全白皮书》统计[6],高端珠宝展柜误报率高达35.2%,主要存在三大挑战:微观特征难捕捉:珠宝切面反射角>120°时,传统算法关键点漏检率激增至68%材质干扰严重:贵金属在射灯下产生的镜面反射(如图1)导致特征漂移安防响
- 5G 智慧园区整体解决方案
数智资源
数智资源5G园区智慧园区大数据人工智能
5G智慧园区整体解决方案聚焦政府、园区管理方、企业、员工四类主体需求,以5G专网为核心,构建“1个平台+3张网络+7大场景”的一体化架构。通过5G基站部署、网络切片、边缘计算等技术,实现园区在全方位安防、一体化物业、精细化能源管控、可视化指挥调度等场景的智能化升级,助力园区提升运营效率、降低管理成本,打造安全、便捷、绿色的智慧化生态,已在工业、能源、医疗等多个领域落地实践,推动园区向数字化、智能化
- 多路视频播放优化之——播放渲染优化
米优
OPenGL音视频前端
渲染方式目前视频播放渲染总体上分为CPU渲染和GPU渲染。为了使视频监控客户端可以播放多路视频,优先使用GPU渲染播放界面更好。GPU渲染在这里使用OpenGL库。Qt下使用OpenGLQt需要实现的步骤1.实现一个继承自QOpenGLWidget的窗口类;2.实现关键的接口virtualvoidinitializeGL();//初始化OpenGL相关资源virtualvoidresizeGL(i
- 格灵深瞳视觉算法面试30问全景精解
机 _ 长
算法面试职场和发展
格灵深瞳视觉算法面试30问全景精解——AI感知×智能安防×场景创新:格灵深瞳视觉算法面试核心考点全览前言格灵深瞳(GREATVISION)作为国内领先的人工智能与计算机视觉企业,专注于智慧安防、智能交通、智慧零售等领域,推动视觉算法在大规模城市级场景的落地。格灵深瞳视觉算法岗位面试不仅考察候选人对视觉基础理论的扎实掌握,更关注其在复杂场景下的创新能力与工程实践。本文精选30个高质量面试问题,涵盖基
- 商汤科技视觉算法面试30问全景精解
商汤科技视觉算法面试30问全景精解——AI赋能×智能视觉×产业创新:商汤科技视觉算法面试核心考点全览前言商汤科技(SenseTime)作为全球领先的人工智能平台公司,专注于计算机视觉、深度学习和智慧城市、智能汽车、智能医疗等领域,推动人脸识别、目标检测、视频分析、自动驾驶等前沿技术的产业化落地。商汤视觉算法岗位面试不仅考察候选人对视觉基础理论的扎实掌握,更关注其在大规模安防、自动驾驶、智慧医疗等复
- 旷视科技视觉算法面试30问全景精解
机 _ 长
科技算法面试深度学习YOLO
旷视科技视觉算法面试30问全景精解——AI赋能×智能安防×视觉创新:旷视科技视觉算法面试核心考点全览前言旷视科技(Megvii)作为全球领先的人工智能公司,专注于计算机视觉、深度学习和智能安防等领域,推动人脸识别、目标检测、视频分析、工业视觉等前沿技术的产业化落地。旷视视觉算法岗位面试不仅考察候选人对视觉基础理论的扎实掌握,更关注其在大规模安防、工业检测、智慧城市等复杂场景下的创新与工程能力。本文
- 计算机视觉:人工智能的“眼睛”
人工智能教程
人工智能计算机视觉机器学习算法pytorchpython数据结构
前言在人工智能的众多领域中,计算机视觉(ComputerVision)无疑是其中最为引人注目的方向之一。它赋予了机器“看”的能力,使计算机能够像人类一样理解和解释视觉信息。从自动驾驶汽车到医疗影像诊断,从安防监控到虚拟现实,计算机视觉的应用场景无处不在,深刻地改变着我们的生活和工作方式。本文将深入探讨计算机视觉的核心技术、应用场景以及未来的发展趋势,帮助您全面了解这一充满活力的领域。一、计算机视觉
- 基于YOLOv8的Web端交互式目标检测系统设计与实现
YOLO实战营
YOLO前端目标检测人工智能ui目标跟踪计算机视觉
1.引言目标检测是计算机视觉领域的一项重要任务,它在安防监控、自动驾驶、医疗影像分析等领域有着广泛的应用。近年来,随着深度学习技术的快速发展,YOLO(YouOnlyLookOnce)系列算法因其出色的速度和精度平衡而备受关注。本文将详细介绍如何基于最新的YOLOv8模型构建一个Web端交互式目标检测系统,包含完整的UI界面设计和数据集处理流程。本系统将实现以下功能:基于YOLOv8的高效目标检测
- “AI多模态视频解析引擎:毫秒级智能解构视听内容,生成结构化语义图谱。“
产品介绍在数字化浪潮席卷全球的当下,视频数据以前所未有的速度爆发式增长,社交媒体、安防监控、交通管理等各个领域每天都在产生海量视频信息。这些视频数据如同蕴藏丰富宝藏的深海,蕴含着巨大价值,但如何高效挖掘其中关键信息,成为横亘在各行业面前的一道难题。多模态视频结构化系统,正是为解决这一痛点而生,凭借其强大的功能、前沿的技术和创新的架构,成为视频数据处理领域的革新者与引领者。一、核心功能详解(一)音频
- Hadoop与图像识别与处理
AI天才研究院
AI大模型企业级应用开发实战AgenticAI实战AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Hadoop与图像识别与处理作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来在大数据时代,数据的爆炸性增长对数据处理技术提出了新的挑战。图像数据作为一种重要的数据形式,其处理和分析在许多领域中具有重要意义,如医疗影像分析、自动驾驶、安防监控等。然而,传统的图像处理方法在面对海量图像数据时显得力不从心。Hadoop作为一种分
- 小虎安防运动教官集训第一天总结
peter_a398
今天是我来小虎安防运动训练的第一天,让我真实的认识了小虎安防运动意义。从早上清脆的哨音让我从新回到那紧张的生活节奏,七天的集训听着很简单,实际上也很简单哈哈,但是要把东西简单易懂有气氛的教给小朋友让其学会其实不是一件容易的事,因为每个小朋友理解接受事物能力是不一样的。该怎样去带小朋友呢这个问题一直在我的脑海中不停的翻来覆去。直到黎导师说到我们出去做个游戏,走出学习室的房间,金灿灿的阳光撒在了我的身
- 出租车智能4G视频监控管理解决方案
索迪迈科技
车载监控录像机人工智能客流统计计算机视觉远程监控
一、方案背景随着城市交通的不断发展,出租车作为城市公共交通的重要组成部分,其运营安全和服务质量备受关注。为了加强对出租车的管理,提高运营安全性,提升服务质量,同时保障乘客和司机的合法权益,建立一套高效的出租车视频监控管理系统具有重要意义。二、系统概述本出租车视频监控管理解决方案旨在通过在出租车上安装视频监控设备,实现对车辆内外情况的实时监控、录像存储、数据传输以及远程管理。系统主要由车载终端设备、
- 人工智能视频分析系统人员离岗报警设计方案
liuhu21
人工智能云计算运维
一、方案概述近几年安防监控技术不断的进步,特别是在人工智能推出之后。安防监控系统结合人工智能算法做到了许多以前无法做到的事情。就比如我们今天要说的离岗检测报警监控系统。以前我们只能通过人工值守监控室的方式,通过人的判断去观看现场人员在岗情况。如今有了离岗检测监控系统,系统可以自动监测现场人员是否在岗、离岗时间以及离岗人数等等。这样,大大减少了监控室值班人员的工作量,同时相较人工监管提升了工作效率。
- 5万人流挤地铁如何追踪?陌讯算法实战FPS飙升300%
开篇痛点在智慧城市安防场景中,传统视觉算法常面临“三难困境”:低光照漏检率飙升(夜间误报率超30%)、人群遮挡ID切换混乱(MOTA指标<50%)、硬件资源吃紧(1080P视频流处理>200ms)。某省会交警平台曾反馈:“雨雾天车牌识别准确率骤降至65%,追踪目标平均5分钟丢失1次”。技术解析:动态多目标蒸馏网络陌讯视觉算法创新性融合多任务蒸馏架构与时空注意力机制,攻克复杂场景泛化难题。核心公式创
- 3步实现安防高精度检测:陌讯算法夜间监控落地实战
2501_92474745
目标跟踪人工智能计算机视觉算法目标检测视觉检测
开篇痛点:安防监控系统在实时目标检测中常面临严峻挑战。实测数据显示,传统算法在低光、遮挡或动态场景下,泛化能力不足,导致平均误报率高达15%(数据来源:安防行业报告)。尤其在夜间或拥挤环境下,系统卡顿、漏检频发,不仅降低响应效率,还增加安全隐患。例如,某城市交通监控中心反馈,其开源模型在高密度人流中出现每秒帧率(FPS)骤降至20帧以下,引发报警延迟问题。这些问题根源在于算法鲁棒性和实时性不足,亟
- 离岗误报率 20%?陌讯时序算法实测降 90%
2501_92474711
算法计算机视觉目标跟踪机器学习人工智能边缘计算
开篇:工业安防中的"隐形漏洞"在制造业车间、变电站等关键场景,离岗检测是保障生产安全的核心环节。传统监控系统依赖人工巡检,存在85%的漏检率;而普通视觉算法在光照变化、人员遮挡场景下,误报率常高达20%以上[实测数据显示]。某汽车零部件厂曾因离岗检测失效导致设备空转2小时,直接损失超12万元。这种"看得见的监控,防不住的风险"困境,凸显了传统视觉方案在复杂工业场景中的局限性。技术解析:从单帧检测到
- 监控漏检频发?陌讯YOLOv7实时优化方案召回率提升25%
2501_92489016
目标跟踪人工智能计算机视觉算法目标检测视觉检测智慧城市
一、开篇痛点在安防监控领域,传统目标检测模型面临三重困境:实时性差:1080P视频流处理普遍低于20FPS(VGG16仅15FPS)漏检率高:密集场景下小目标召回率常低于60%(COCO-val实测数据)部署成本高:ResNet-101需8GB显存,难以边缘化部署某智慧园区项目显示:夜间误报率高达34%,运维成本激增300%二、技术解析:陌讯SlimYOLO架构创新针对上述痛点,陌讯视觉算法提出三
- 基于STM32无线WIFI智能家居实时控制系统设计
**单片机设计介绍,基于STM32无线WIFI智能家居实时控制系统设计文章目录一概要二、功能设计设计思路三、软件设计原理图五、程序六、文章目录一概要 基于STM32无线WiFi智能家居实时控制系统设计概要如下:一、项目概述本项目旨在设计一个基于STM32微控制器和无线WiFi技术的智能家居实时控制系统。该系统能够连接并控制各种智能家居设备,如灯光、窗帘、安防监控设备等,同时支持远程控制、环境监测
- 深度学习模型开发部署全流程:以YOLOv11目标检测任务为例
你喜欢喝可乐吗?
deeplearningdeploy深度学习YOLO目标检测
深度学习模型开发部署全流程:以YOLOv11目标检测任务为例深度学习模型从开发到部署的完整流程包含需求分析、数据准备、模型训练、模型优化、模型测试和部署运行六大核心环节。YOLOv11作为新一代目标检测模型,不仅延续了YOLO系列的高效实时性能,还在检测精度和泛化能力上取得显著突破,使其成为工业质检、安防监控、自动驾驶等领域的理想选择。本文将详细阐述这一完整流程,并结合YOLOv11的具体实现,提
- 聚众识别漏检难题?陌讯多尺度检测实测提升 92%
一、开篇痛点:复杂场景下的聚众识别困境在安防监控、大型赛事等场景中,实时聚众识别是保障公共安全的核心技术。但传统视觉算法常面临三大难题:一是密集人群重叠导致小目标漏检率超30%,二是光照变化(如夜间逆光)引发误报率飙升,三是复杂背景干扰下实时性不足(FPS<15)。某景区监控项目曾反馈,开源模型在节假日人流高峰时,因漏检导致预警延迟达20秒,存在严重安全隐患。这些问题的根源在于传统算法的局限性:单
- java数字签名三种方式
知了ing
javajdk
以下3钟数字签名都是基于jdk7的
1,RSA
String password="test";
// 1.初始化密钥
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA");
keyPairGenerator.initialize(51
- Hibernate学习笔记
caoyong
Hibernate
1>、Hibernate是数据访问层框架,是一个ORM(Object Relation Mapping)框架,作者为:Gavin King
2>、搭建Hibernate的开发环境
a>、添加jar包:
aa>、hibernatte开发包中/lib/required/所
- 设计模式之装饰器模式Decorator(结构型)
漂泊一剑客
Decorator
1. 概述
若你从事过面向对象开发,实现给一个类或对象增加行为,使用继承机制,这是所有面向对象语言的一个基本特性。如果已经存在的一个类缺少某些方法,或者须要给方法添加更多的功能(魅力),你也许会仅仅继承这个类来产生一个新类—这建立在额外的代码上。
- 读取磁盘文件txt,并输入String
一炮送你回车库
String
public static void main(String[] args) throws IOException {
String fileContent = readFileContent("d:/aaa.txt");
System.out.println(fileContent);
- js三级联动下拉框
3213213333332132
三级联动
//三级联动
省/直辖市<select id="province"></select>
市/省直辖<select id="city"></select>
县/区 <select id="area"></select>
- erlang之parse_transform编译选项的应用
616050468
parse_transform游戏服务器属性同步abstract_code
最近使用erlang重构了游戏服务器的所有代码,之前看过C++/lua写的服务器引擎代码,引擎实现了玩家属性自动同步给前端和增量更新玩家数据到数据库的功能,这也是现在很多游戏服务器的优化方向,在引擎层面去解决数据同步和数据持久化,数据发生变化了业务层不需要关心怎么去同步给前端。由于游戏过程中玩家每个业务中玩家数据更改的量其实是很少
- JAVA JSON的解析
darkranger
java
// {
// “Total”:“条数”,
// Code: 1,
//
// “PaymentItems”:[
// {
// “PaymentItemID”:”支款单ID”,
// “PaymentCode”:”支款单编号”,
// “PaymentTime”:”支款日期”,
// ”ContractNo”:”合同号”,
//
- POJ-1273-Drainage Ditches
aijuans
ACM_POJ
POJ-1273-Drainage Ditches
http://poj.org/problem?id=1273
基本的最大流,按LRJ的白书写的
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
#define INF 0x7fffffff
int ma
- 工作流Activiti5表的命名及含义
atongyeye
工作流Activiti
activiti5 - http://activiti.org/designer/update在线插件安装
activiti5一共23张表
Activiti的表都以ACT_开头。 第二部分是表示表的用途的两个字母标识。 用途也和服务的API对应。
ACT_RE_*: 'RE'表示repository。 这个前缀的表包含了流程定义和流程静态资源 (图片,规则,等等)。
A
- android的广播机制和广播的简单使用
百合不是茶
android广播机制广播的注册
Android广播机制简介 在Android中,有一些操作完成以后,会发送广播,比如说发出一条短信,或打出一个电话,如果某个程序接收了这个广播,就会做相应的处理。这个广播跟我们传统意义中的电台广播有些相似之处。之所以叫做广播,就是因为它只负责“说”而不管你“听不听”,也就是不管你接收方如何处理。另外,广播可以被不只一个应用程序所接收,当然也可能不被任何应
- Spring事务传播行为详解
bijian1013
javaspring事务传播行为
在service类前加上@Transactional,声明这个service所有方法需要事务管理。每一个业务方法开始时都会打开一个事务。
Spring默认情况下会对运行期例外(RunTimeException)进行事务回滚。这
- eidtplus operate
征客丶
eidtplus
开启列模式: Alt+C 鼠标选择 OR Alt+鼠标左键拖动
列模式替换或复制内容(多行):
右键-->格式-->填充所选内容-->选择相应操作
OR
Ctrl+Shift+V(复制多行数据,必须行数一致)
-------------------------------------------------------
- 【Kafka一】Kafka入门
bit1129
kafka
这篇文章来自Spark集成Kafka(http://bit1129.iteye.com/blog/2174765),这里把它单独取出来,作为Kafka的入门吧
下载Kafka
http://mirror.bit.edu.cn/apache/kafka/0.8.1.1/kafka_2.10-0.8.1.1.tgz
2.10表示Scala的版本,而0.8.1.1表示Kafka
- Spring 事务实现机制
BlueSkator
spring代理事务
Spring是以代理的方式实现对事务的管理。我们在Action中所使用的Service对象,其实是代理对象的实例,并不是我们所写的Service对象实例。既然是两个不同的对象,那为什么我们在Action中可以象使用Service对象一样的使用代理对象呢?为了说明问题,假设有个Service类叫AService,它的Spring事务代理类为AProxyService,AService实现了一个接口
- bootstrap源码学习与示例:bootstrap-dropdown(转帖)
BreakingBad
bootstrapdropdown
bootstrap-dropdown组件是个烂东西,我读后的整体感觉。
一个下拉开菜单的设计:
<ul class="nav pull-right">
<li id="fat-menu" class="dropdown">
- 读《研磨设计模式》-代码笔记-中介者模式-Mediator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 中介者模式(Mediator):用一个中介对象来封装一系列的对象交互。
* 中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。
*
* 在我看来,Mediator模式是把多个对象(
- 常用代码记录
chenjunt3
UIExcelJ#
1、单据设置某行或某字段不能修改
//i是行号,"cash"是字段名称
getBillCardPanelWrapper().getBillCardPanel().getBillModel().setCellEditable(i, "cash", false);
//取得单据表体所有项用以上语句做循环就能设置整行了
getBillC
- 搜索引擎与工作流引擎
comsci
算法工作搜索引擎网络应用
最近在公司做和搜索有关的工作,(只是简单的应用开源工具集成到自己的产品中)工作流系统的进一步设计暂时放在一边了,偶然看到谷歌的研究员吴军写的数学之美系列中的搜索引擎与图论这篇文章中的介绍,我发现这样一个关系(仅仅是猜想)
-----搜索引擎和流程引擎的基础--都是图论,至少像在我在JWFD中引擎算法中用到的是自定义的广度优先
- oracle Health Monitor
daizj
oracleHealth Monitor
About Health Monitor
Beginning with Release 11g, Oracle Database includes a framework called Health Monitor for running diagnostic checks on the database.
About Health Monitor Checks
Health M
- JSON字符串转换为对象
dieslrae
javajson
作为前言,首先是要吐槽一下公司的脑残编译部署方式,web和core分开部署本来没什么问题,但是这丫居然不把json的包作为基础包而作为web的包,导致了core端不能使用,而且我们的core是可以当web来用的(不要在意这些细节),所以在core中处理json串就是个问题.没办法,跟编译那帮人也扯不清楚,只有自己写json的解析了.
- C语言学习八结构体,综合应用,学生管理系统
dcj3sjt126com
C语言
实现功能的代码:
# include <stdio.h>
# include <malloc.h>
struct Student
{
int age;
float score;
char name[100];
};
int main(void)
{
int len;
struct Student * pArr;
int i,
- vagrant学习笔记
dcj3sjt126com
vagrant
想了解多主机是如何定义和使用的, 所以又学习了一遍vagrant
1. vagrant virtualbox 下载安装
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
查看安装在命令行输入vagrant
2.
- 14.性能优化-优化-软件配置优化
frank1234
软件配置性能优化
1.Tomcat线程池
修改tomcat的server.xml文件:
<Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" maxThreads="1200" m
- 一个不错的shell 脚本教程 入门级
HarborChung
linuxshell
一个不错的shell 脚本教程 入门级
建立一个脚本 Linux中有好多中不同的shell,但是通常我们使用bash (bourne again shell) 进行shell编程,因为bash是免费的并且很容易使用。所以在本文中笔者所提供的脚本都是使用bash(但是在大多数情况下,这些脚本同样可以在 bash的大姐,bourne shell中运行)。 如同其他语言一样
- Spring4新特性——核心容器的其他改进
jinnianshilongnian
spring动态代理spring4依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- Linux设置tomcat开机启动
liuxingguome
tomcatlinux开机自启动
执行命令sudo gedit /etc/init.d/tomcat6
然后把以下英文部分复制过去。(注意第一句#!/bin/sh如果不写,就不是一个shell文件。然后将对应的jdk和tomcat换成你自己的目录就行了。
#!/bin/bash
#
# /etc/rc.d/init.d/tomcat
# init script for tomcat precesses
- 第13章 Ajax进阶(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Troubleshooting Crystal Reports off BW
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Troubleshooting+Crystal+Reports+off+BW#TroubleshootingCrystalReportsoffBW-TracingBOE
Quite useful, especially this part:
SAP BW connectivity
For t
- Java开发熟手该当心的11个错误
tomcat_oracle
javajvm多线程单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 正则表达式大全
yang852220741
html编程正则表达式
今天向大家分享正则表达式大全,它可以大提高你的工作效率
正则表达式也可以被当作是一门语言,当你学习一门新的编程语言的时候,他们是一个小的子语言。初看时觉得它没有任何的意义,但是很多时候,你不得不阅读一些教程,或文章来理解这些简单的描述模式。
一、校验数字的表达式
数字:^[0-9]*$
n位的数字:^\d{n}$
至少n位的数字:^\d{n,}$
m-n位的数字:^\d{m,n}$