- 亚远景-传统功能安全VS AI安全:ISO 8800填补的标准空白与实施难点
一、为什么需要ISO8800:传统安全标准的“盲区”传统功能安全(ISO26262)•假设:系统行为可被完整规格化,失效模式可枚举,风险可用概率-危害矩阵量化。•盲区:对“设计意图正确,但AI模型因数据或算法不确定性导致错误输出”的场景(即AI特有的性能局限/概念漂移/对抗样本)没有覆盖。预期功能安全(ISO21448/SOTIF)•重点解决“功能定义不足或误用”带来的风险,但仍以人类可描述的场景
- 九章数学体系:定义域无界化——AI鲁棒性的“隐形杀手“
九章数学体系
数学建模拓扑学人工智能神经网络
九章数学体系:定义域无界化——AI鲁棒性的"隐形杀手"摘要传统人工智能模型在面对边缘场景时常常表现出鲁棒性不足的问题,本文深入分析发现,这种现象的本质根源在于模型缺乏显式的定义域约束,导致无界化假设成为影响AI鲁棒性的"隐形杀手"。文章系统阐述了无界假设如何引发对抗样本脆弱性和数值不稳定等核心问题,并引入九章数学体系的定义域约束理论,为解决这些问题提供了全新的数学视角和工程实现路径。研究表明,通过
- AI生成代码安全审计:从AST逆向到对抗样本生成
梦玄海
人工智能安全
引言随着Codex、Copilot等AI代码生成工具的普及,开发效率显著提升的同时,也引入了新型安全风险:模型生成的代码可能隐含漏洞(如SQL注入、XSS)、逻辑错误,或被恶意样本“投毒”。传统的静态扫描工具(如SonarQube)难以覆盖AI模型的上下文语义逻辑,亟需结合程序分析与AI对抗技术进行深度审计。本文将从AST逆向工程切入,深入探讨如何通过对抗样本检测AI生成代码的脆弱性。一、核心挑战
- 点云从入门到精通技术详解100篇-基于参数平面拉伸的点云流形攻击(续)
格图素书
平面
目录3.3.4重构分析3.3.5消融实验4基于参数平面拉伸的点云流形攻击4.1点云流形攻击算法设计4.2点云流形攻击网络4.2.1基于TPS的参数平面拉伸4.2.2点云流形攻击对抗样本生成4.2.3训练损失4.3实验与分析4.3.1实验设置4.3.2攻击表现4.3.3攻击扰动幅度分析4.3.4可视化4.3.5消融实验4.3.6流形攻击的特殊效果5点云对抗攻击评测与分析系统5.1系统需求分析5.1.
- AI原生应用领域安全防护:提升安全性能的方法与技巧
SuperAGI2025
AI-native安全ai
AI原生应用领域安全防护:提升安全性能的方法与技巧关键词:AI原生应用、安全防护、对抗样本、数据隐私、模型鲁棒性、可信AI、安全测试摘要:随着AI技术从“辅助工具”升级为“核心驱动”,AI原生应用(以AI为底层架构的应用,如自动驾驶、智能医疗诊断)正在改变我们的生活。但这类应用就像“会思考的智能机器人”,一旦被攻击或利用,可能引发严重后果——比如自动驾驶误判路标、医疗AI给出错误诊断。本文将从AI
- 软件工程领域 AI 评测的安全测试评测
项目管理实战手册
软件工程人工智能ai
软件工程领域AI评测的安全测试评测:给AI系统做一次“安全体检”关键词:AI安全测试、对抗样本、鲁棒性评测、软件工程、AI可靠性摘要:当AI系统从实验室走向医疗诊断、自动驾驶、金融风控等关键领域时,它的“安全性”变得比任何时候都重要——就像我们不会让一个总把“红灯”认成“绿灯”的司机上路。本文将带您像给AI做“安全体检”一样,拆解软件工程中AI评测的核心环节——安全测试评测,用通俗易懂的语言解释对
- 深入浅出对抗学习:概念、攻击、防御与代码实践
Undoom
学习
深入浅出对抗学习:概念、攻击、防御与代码实践近年来,深度学习在图像识别、自然语言处理等领域取得了巨大成功。然而,研究表明,这些看似强大的模型却异常脆弱,容易受到**对抗样本(AdversarialExamples)**的攻击。对抗学习(AdversarialLearning)应运而生,它研究如何生成对抗样本以揭示模型弱点,以及如何构建更鲁棒的模型来抵御这些攻击。1.什么是对抗样本?对抗样本是指在原
- 大模型越狱:技术漏洞与安全挑战——从原理到防御
JXY_AI
安全
近年来,随着大模型能力的飞速提升,其安全性问题日益受到关注。其中,“大模型越狱”(ModelJailbreaking)成为热议焦点——指通过特定手段绕过模型的安全限制,诱导其生成有害、违法或超出设计范围的内容。本文将从技术原理、攻击手段、防御策略等角度,深入解析这一现象。一、什么是大模型越狱?大模型越狱是指利用模型的逻辑漏洞或训练缺陷,通过特定输入(如提示词、对抗样本等)突破其预设的安全机制,使其
- Adversarial examples based on object detection tasks: A survey》论文阅读笔记
2301_80355452
目标检测论文阅读笔记
这是一篇关于目标检测任务中对抗样本攻击的综述论文。文章介绍了深度学习在计算机中的应用,以及对抗样本攻击的相关概念和方法,其中重点讨论了目标检测任务中基于分类和回归的对抗样本攻击,并对其他相关攻击方法进行了总结,最后得出结论并展望未来研究方向。1.引言深度学习背景:深度学习在处理图像或视频数据方面具有优势,广泛应用于计算机视觉任务,但由于深度网络的复杂结构,其存在脆弱性,容易受到攻击。目标检测任务:
- 深度学习模型安全:AI系统防护策略
AI大模型应用工坊
AI大模型开发实战人工智能深度学习安全ai
深度学习模型安全:AI系统防护策略关键词:深度学习、模型安全、对抗攻击、防御策略、AI系统、数据安全、鲁棒性摘要:随着深度学习在关键领域的广泛应用,模型安全成为AI系统落地的核心挑战。本文系统剖析深度学习面临的安全威胁,包括对抗样本攻击、数据投毒、模型窃取等核心风险,构建从攻击原理到防御体系的完整技术框架。通过数学模型推导、Python代码实现和真实场景案例,详细讲解对抗训练、防御蒸馏、梯度掩码等
- 对抗样本检测实战:生成式AI内容审核的伦理边界控制与最新方法解析
燃灯工作室
Ai人工智能
一、技术原理与数学模型1.1对抗样本生成机制生成式AI的对抗样本攻击可形式化为优化问题:maxδL(fθ(x+δ),ytarget)s.t.∥δ∥p≤ϵ\max_{\delta}\mathcal{L}(f_\theta(x+\delta),y_{target})\quad\text{s.t.}\quad\|\delta\|_p\leq\epsilonδmaxL(fθ(x+δ),ytarget)s
- FGSM对抗样本生成算法实现(pytorch版)
入梦风行
深度学习算法pytorch人工智能python深度学习
FGSM对抗样本生成算法一、理论部分1.1目标1.2数学公式1.3推导过程1.4直观解释1.5示例1.6总结二、代码实现2.1导包2.2数据加载和处理2.3网络构建2.4模型加载2.5生成对抗样本2.6攻击测试2.7启动攻击2.8效果展示一、理论部分FGSM(FastGradientSignMethod)是一种经典的对抗样本生成方法,其核心思想是通过在输入数据的梯度方向上添加扰动,从而生成对抗样本
- CVPR2025 | 对抗样本&智能安全方向论文汇总 | 持续更新中~
四口鲸鱼爱吃盐
文献阅读安全transformer深度学习对抗样本神经网络视觉语言模型后门攻击
汇总结果来源:CVPR2025AcceptedPapers若文中出现的论文链接和GitHub链接点不开,则说明还未公布,在公布后笔者会及时添加.若笔者未及时添加,欢迎读者告知.文章根据题目关键词搜索,可能会有遗漏.若笔者出现遗漏,欢迎告知.部分文章还未公布正文,只有名称.MindtheGap:通过查询更新分析检测正在进行中的黑盒对抗攻击MindtheGap:DetectingBlack-boxAd
- 技术解析麦萌短剧《月光下的你》:从「时间序列的对抗扰动」到「加密身份的收敛证明」
萌萌短剧
重构
《月光下的你》以十六年的时间跨度展开一场关于「数据污染」与「身份验证」的深度博弈,本文将用机器学习视角拆解这场跨越时空的模型纠偏实验。1.数据污染事件:十六年前的对抗攻击许芳菲(Agent_Xu)的遭遇可视为时间序列上的对抗样本注入:标签篡改攻击:许清清(Adversary_XuQing)通过伪造标签(Label_Tampering)将Agent_Xu与傅临州(Node_Fu)强行关联,触发道德约
- 机器学习安全核心算法全景解析
金外飞176
网络空间安全机器学习安全算法
机器学习安全核心算法全景解析引言机器学习系统的脆弱性正成为安全攻防的新战场。从数据投毒到模型窃取,攻击者不断突破传统防御边界。本文系统性梳理ML安全关键技术图谱,重点解析12类核心算法及其防御价值。一、数据安全防护算法1.对抗样本防御算法名称核心思想2024年最新进展典型应用场景TRADES鲁棒性-准确性权衡优化Facebook提出自监督TRADES改进版自动驾驶目标检测JacobianSVD输入
- 基于深度学习的对抗样本生成与防御
SEU-WYL
深度学习dnn深度学习人工智能
基于深度学习的对抗样本生成与防御是当前人工智能安全领域的关键研究方向。对抗样本是通过对输入数据进行微小扰动而产生的,能够导致深度学习模型做出错误预测。这对图像分类、自然语言处理、语音识别等应用构成了严重威胁,因此相应的防御措施也在不断发展。1.对抗样本生成对抗样本生成的方法主要有两大类:基于梯度的方法和基于优化的方法。1.1基于梯度的方法这些方法利用模型的梯度信息,通过细微的扰动来生成对抗样本,迫
- 基于深度学习的动态对抗策略
SEU-WYL
深度学习dnn深度学习人工智能
基于深度学习的动态对抗策略是为了应对不断变化的对抗环境而提出的一类方法,这些策略能够动态地调整和优化模型的防御机制,以提高深度学习模型在各种对抗攻击下的鲁棒性和安全性。这类策略结合了对抗样本生成、模型防御和自适应学习的技术,形成了一种具有持续学习和适应能力的对抗防御框架。1.动态对抗策略的核心思想动态对抗策略的核心在于能够根据当前的攻击方式和环境变化实时调整模型的防御措施,以更有效地抵御对抗样本攻
- [当人工智能遇上安全] 11.威胁情报实体识别 (2)基于BiGRU-CRF的中文实体识别万字详解
Eastmount
当人工智能遇上安全人工智能实体识别BiGRU威胁情报Python
您或许知道,作者后续分享网络安全的文章会越来越少。但如果您想学习人工智能和安全结合的应用,您就有福利了,作者将重新打造一个《当人工智能遇上安全》系列博客,详细介绍人工智能与安全相关的论文、实践,并分享各种案例,涉及恶意代码检测、恶意请求识别、入侵检测、对抗样本等等。只想更好地帮助初学者,更加成体系的分享新知识。该系列文章会更加聚焦,更加学术,更加深入,也是作者的慢慢成长史。换专业确实挺难的,系统安
- 对抗样本之FGSM原理&实战
liuyishou
目录1、FGSM原理2、pytorch实现2.1建立模型2.2FGSM模块2.3测试2.4可视化对比2.5对比样本与对抗样本1、FGSM原理论文Explainingandharnessingadversarialexamples.这篇论文由Goodfellow等人发表在ICLR2015会议上,是对抗样本生成领域的经典论文。FGSM(fastgradientsignmethod)是一种基于梯度生成对
- FGSM方法生成交通信号牌的对抗图像样本
Rnan-prince
网络安全python人工智能
背景:生成对抗样本,即扰动图像,让原本是“停车”的信号牌识别为“禁止驶入”实验准备模型:找一个训练好的,识别交通信号牌的CNN模型,灰度图像模型地址:GitHub-Daulettulegenov/TSR_CNN:Trafficsignrecognition数据:ChineseTrafficSignDatabase(CTSDB)当下最受欢迎的国内交通标志数据集之一,该数据集容纳6164个交通标志图像
- 【论文阅读】深度学习中的后门攻击综述
ADSecT吴中生
IT技术论文阅读深度学习人工智能网络安全机器学习
深度学习中的后门攻击综述1.深度学习模型三种攻击范式1.1.对抗样本攻击1.2.数据投毒攻击1.3.后门攻击2.后门攻击特点3.常用术语和标记4.常用评估指标5.攻击设置5.1.触发器5.1.1.触发器属性5.1.2.触发器类型5.1.3.攻击类型5.2.目标类别5.3.训练方式1.深度学习模型三种攻击范式后门攻击是一种隐秘而具有挑战性的网络安全威胁,它指的是攻击者利用漏洞或特殊访问权限,在系统中
- AI安全综述
captain_hwz
security人工智能安全
1、引言AI安全这个话题,通常会引伸出来图像识别领域的对抗样本攻击。下面这张把“熊猫”变“猴子”的攻击样例应该都不陌生,包括很多照片/视频过人脸的演示也很多。对抗样本的研究领域已经具备了一定的成熟性,有一系列的理论来论述对抗样本的存在必然性等特征。从另一角度,也可以看成是通过对抗样本来研究模型的运算机理。但AI应用更成熟的搜广推等领域,就很少看到相关研究。我认为其原因在于,缺乏足够的攻击场景支撑。
- 【新论文】【模型攻击】DiffAttack 针对基于扩散的对抗性净化的逃避攻击
prinTao
人工智能
DiffAttack:EvasionAttacksAgainstDiffusion-BasedAdversarialPurification作者:MintongKang;DawnSong;BoLi链接:http://arxiv.org/pdf/2311.16124v1备注:AcceptedtoNeurIPS2023摘要:基于扩散的净化防御利用扩散模型去除对抗样本的精心设计的扰动,从而实现最先进的鲁
- 物理世界中的等距3D对抗样本
凌峰的博客
3d
论文题目:Isometric3DAdversarialExamplesinthePhysicalWorld会议:NIPS2022点云:点云——表达目标空间分布和目标表面特性的海量点集合,点包含xyz坐标信息能够包含颜色等其他信息使用顶点、边和面的数据表征的三维图形的表面,顶点包含坐标信息,面片常用顶点编号来表示,同时可以附加纹理颜色等信息点云和mesh是常用的3D表示数据、获取容易(使用RGBD相
- 2022BCS——AI安全论坛
TARO_ZERO
论坛讲座人工智能安全
AI安全研究发现AI安全研究主要集中于:模型鲁棒性(对抗样本攻击)、机密性(成员推理攻击)、完整性(模型后门攻击)e.g.人脸识别身份认证协议的安全威胁:传输过程、感知器件、终端系统、宿主软件、业务代码、识别模型联邦学习:面向端侧隐私保护的分布式学习模式,每个节点只需要提供梯度,广泛应用于开放环境中,同样也存在终端节点更易被恶意控制的威胁安全问题:梯度投毒、梯度泄密自动驾驶系统:多感知模块协同的智
- 常见的AI安全风险(数据投毒、后门攻击、对抗样本攻击、模型窃取攻击等)
ADSecT吴中生
IT技术人工智能安全机器学习深度学习网络安全
文章目录数据投毒(DataPoisoning)后门攻击(BackdoorAttacks)对抗样本攻击(AdversarialExamples)模型窃取攻击(ModelExtractionAttacks)参考资料数据投毒(DataPoisoning)数据投毒是一种通过在训练数据中植入恶意样本或修改数据以欺骗机器学习模型的方法。这种攻击旨在使模型在未来的预测或决策中产生错误结果。攻击者可能会植入具有误
- 对抗攻击经典论文——FGSM学习笔记 EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES
亦清尘
#深度学习对抗攻击机器学习神经网络算法机器学习深度学习
论文下载:ExplainingandHarnessingAdversarialExamples1摘要几种机器学习模型,包括神经网络,一致地将对抗样本误分类——通过对数据集样本添加细微而刻意的扰动形成的输入,会导致模型以较高的置信度输出错误的结果。早期尝试解释这种现象时会专注于非线性和过拟合。但我们认为,造成神经网络在面对对抗扰动时的脆弱性的主要原因正是它们的线性特性。这种解释得到了新的定量结果的支
- 使用pgd和fgsm方法进行攻击并使用map方法评估
yjjjj11
深度学习目标检测神经网络
本次实验对100张飞机图片组成的数据集,分别使用pgd攻击和fgsm攻击,达到对每张图片飞机区域的攻击,并使用getmap程序对攻击的效果进行评估。文章目录1、运行1.py程序和auto.py程序对飞机数据集的所有图片进行获取掩码操作(1)1.py程序(2)auto.py程序(3)运行后得到自动生成的掩码图像2、使用pgd对数据集生成对抗样本3、使用fgsm方法生成对抗样本4、使用map方法进行评
- 对抗样本机器学习_cleverhans_FGSM/JSMA
weixin_34400525
人工智能数据结构与算法
对抗样本机器学习_Note1_机器学习转载自:https://yq.aliyun.com/ziliao/292780机器学习方法,如SVM,神经网络等,虽然在如图像分类等问题上已经outperform人类对同类问题的处理能力,但是也有其固有的缺陷,即我们的训练集喂的都是naturalinput,因此在正常情况下处理的比较好。然而如果我们想要对ML模型进行攻击的话,可以通过一定的手段生成对抗样本(a
- [当人工智能遇上安全] 10.威胁情报实体识别 (1)基于BiLSTM-CRF的实体识别万字详解
Eastmount
当人工智能遇上安全人工智能网络安全威胁情报实体识别深度学习
您或许知道,作者后续分享网络安全的文章会越来越少。但如果您想学习人工智能和安全结合的应用,您就有福利了,作者将重新打造一个《当人工智能遇上安全》系列博客,详细介绍人工智能与安全相关的论文、实践,并分享各种案例,涉及恶意代码检测、恶意请求识别、入侵检测、对抗样本等等。只想更好地帮助初学者,更加成体系的分享新知识。该系列文章会更加聚焦,更加学术,更加深入,也是作者的慢慢成长史。换专业确实挺难的,系统安
- jdk tomcat 环境变量配置
Array_06
javajdktomcat
Win7 下如何配置java环境变量
1。准备jdk包,win7系统,tomcat安装包(均上网下载即可)
2。进行对jdk的安装,尽量为默认路径(但要记住啊!!以防以后配置用。。。)
3。分别配置高级环境变量。
电脑-->右击属性-->高级环境变量-->环境变量。
分别配置 :
path
&nbs
- Spring调SDK包报java.lang.NoSuchFieldError错误
bijian1013
javaspring
在工作中调另一个系统的SDK包,出现如下java.lang.NoSuchFieldError错误。
org.springframework.web.util.NestedServletException: Handler processing failed; nested exception is java.l
- LeetCode[位运算] - #136 数组中的单一数
Cwind
java题解位运算LeetCodeAlgorithm
原题链接:#136 Single Number
要求:
给定一个整型数组,其中除了一个元素之外,每个元素都出现两次。找出这个元素
注意:算法的时间复杂度应为O(n),最好不使用额外的内存空间
难度:中等
分析:
题目限定了线性的时间复杂度,同时不使用额外的空间,即要求只遍历数组一遍得出结果。由于异或运算 n XOR n = 0, n XOR 0 = n,故将数组中的每个元素进
- qq登陆界面开发
15700786134
qq
今天我们来开发一个qq登陆界面,首先写一个界面程序,一个界面首先是一个Frame对象,即是一个窗体。然后在这个窗体上放置其他组件。代码如下:
public class First { public void initul(){ jf=ne
- Linux的程序包管理器RPM
被触发
linux
在早期我们使用源代码的方式来安装软件时,都需要先把源程序代码编译成可执行的二进制安装程序,然后进行安装。这就意味着每次安装软件都需要经过预处理-->编译-->汇编-->链接-->生成安装文件--> 安装,这个复杂而艰辛的过程。为简化安装步骤,便于广大用户的安装部署程序,程序提供商就在特定的系统上面编译好相关程序的安装文件并进行打包,提供给大家下载,我们只需要根据自己的
- socket通信遇到EOFException
肆无忌惮_
EOFException
java.io.EOFException
at java.io.ObjectInputStream$PeekInputStream.readFully(ObjectInputStream.java:2281)
at java.io.ObjectInputStream$BlockDataInputStream.readShort(ObjectInputStream.java:
- 基于spring的web项目定时操作
知了ing
javaWeb
废话不多说,直接上代码,很简单 配置一下项目启动就行
1,web.xml
<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="h
- 树形结构的数据库表Schema设计
矮蛋蛋
schema
原文地址:
http://blog.csdn.net/MONKEY_D_MENG/article/details/6647488
程序设计过程中,我们常常用树形结构来表征某些数据的关联关系,如企业上下级部门、栏目结构、商品分类等等,通常而言,这些树状结构需要借助于数据库完成持久化。然而目前的各种基于关系的数据库,都是以二维表的形式记录存储数据信息,
- maven将jar包和源码一起打包到本地仓库
alleni123
maven
http://stackoverflow.com/questions/4031987/how-to-upload-sources-to-local-maven-repository
<project>
...
<build>
<plugins>
<plugin>
<groupI
- java IO操作 与 File 获取文件或文件夹的大小,可读,等属性!!!
百合不是茶
类 File
File是指文件和目录路径名的抽象表示形式。
1,何为文件:
标准文件(txt doc mp3...)
目录文件(文件夹)
虚拟内存文件
2,File类中有可以创建文件的 createNewFile()方法,在创建新文件的时候需要try{} catch(){}因为可能会抛出异常;也有可以判断文件是否是一个标准文件的方法isFile();这些防抖都
- Spring注入有继承关系的类(2)
bijian1013
javaspring
被注入类的父类有相应的属性,Spring可以直接注入相应的属性,如下所例:1.AClass类
package com.bijian.spring.test4;
public class AClass {
private String a;
private String b;
public String getA() {
retu
- 30岁转型期你能否成为成功人士
bijian1013
成长励志
很多人由于年轻时走了弯路,到了30岁一事无成,这样的例子大有人在。但同样也有一些人,整个职业生涯都发展得很优秀,到了30岁已经成为职场的精英阶层。由于做猎头的原因,我们接触很多30岁左右的经理人,发现他们在职业发展道路上往往有很多致命的问题。在30岁之前,他们的职业生涯表现很优秀,但从30岁到40岁这一段,很多人
- 【Velocity四】Velocity与Java互操作
bit1129
velocity
Velocity出现的目的用于简化基于MVC的web应用开发,用于替代JSP标签技术,那么Velocity如何访问Java代码.本篇继续以Velocity三http://bit1129.iteye.com/blog/2106142中的例子为基础,
POJO
package com.tom.servlets;
public
- 【Hive十一】Hive数据倾斜优化
bit1129
hive
什么是Hive数据倾斜问题
操作:join,group by,count distinct
现象:任务进度长时间维持在99%(或100%),查看任务监控页面,发现只有少量(1个或几个)reduce子任务未完成;查看未完成的子任务,可以看到本地读写数据量积累非常大,通常超过10GB可以认定为发生数据倾斜。
原因:key分布不均匀
倾斜度衡量:平均记录数超过50w且
- 在nginx中集成lua脚本:添加自定义Http头,封IP等
ronin47
nginx lua csrf
Lua是一个可以嵌入到Nginx配置文件中的动态脚本语言,从而可以在Nginx请求处理的任何阶段执行各种Lua代码。刚开始我们只是用Lua 把请求路由到后端服务器,但是它对我们架构的作用超出了我们的预期。下面就讲讲我们所做的工作。 强制搜索引擎只索引mixlr.com
Google把子域名当作完全独立的网站,我们不希望爬虫抓取子域名的页面,降低我们的Page rank。
location /{
- java-3.求子数组的最大和
bylijinnan
java
package beautyOfCoding;
public class MaxSubArraySum {
/**
* 3.求子数组的最大和
题目描述:
输入一个整形数组,数组里有正数也有负数。
数组中连续的一个或多个整数组成一个子数组,每个子数组都有一个和。
求所有子数组的和的最大值。要求时间复杂度为O(n)。
例如输入的数组为1, -2, 3, 10, -4,
- Netty源码学习-FileRegion
bylijinnan
javanetty
今天看org.jboss.netty.example.http.file.HttpStaticFileServerHandler.java
可以直接往channel里面写入一个FileRegion对象,而不需要相应的encoder:
//pipeline(没有诸如“FileRegionEncoder”的handler):
public ChannelPipeline ge
- 使用ZeroClipboard解决跨浏览器复制到剪贴板的问题
cngolon
跨浏览器复制到粘贴板Zero Clipboard
Zero Clipboard的实现原理
Zero Clipboard 利用透明的Flash让其漂浮在复制按钮之上,这样其实点击的不是按钮而是 Flash ,这样将需要的内容传入Flash,再通过Flash的复制功能把传入的内容复制到剪贴板。
Zero Clipboard的安装方法
首先需要下载 Zero Clipboard的压缩包,解压后把文件夹中两个文件:ZeroClipboard.js
- 单例模式
cuishikuan
单例模式
第一种(懒汉,线程不安全):
public class Singleton { 2 private static Singleton instance; 3 pri
- spring+websocket的使用
dalan_123
一、spring配置文件
<?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.or
- 细节问题:ZEROFILL的用法范围。
dcj3sjt126com
mysql
1、zerofill把月份中的一位数字比如1,2,3等加前导0
mysql> CREATE TABLE t1 (year YEAR(4), month INT(2) UNSIGNED ZEROFILL, -> day
- Android开发10——Activity的跳转与传值
dcj3sjt126com
Android开发
Activity跳转与传值,主要是通过Intent类,Intent的作用是激活组件和附带数据。
一、Activity跳转
方法一Intent intent = new Intent(A.this, B.class); startActivity(intent)
方法二Intent intent = new Intent();intent.setCla
- jdbc 得到表结构、主键
eksliang
jdbc 得到表结构、主键
转自博客:http://blog.csdn.net/ocean1010/article/details/7266042
假设有个con DatabaseMetaData dbmd = con.getMetaData(); rs = dbmd.getColumns(con.getCatalog(), schema, tableName, null); rs.getSt
- Android 应用程序开关GPS
gqdy365
android
要在应用程序中操作GPS开关需要权限:
<uses-permission android:name="android.permission.WRITE_SECURE_SETTINGS" />
但在配置文件中添加此权限之后会报错,无法再eclipse里面正常编译,怎么办?
1、方法一:将项目放到Android源码中编译;
2、方法二:网上有人说cl
- Windows上调试MapReduce
zhiquanliu
mapreduce
1.下载hadoop2x-eclipse-plugin https://github.com/winghc/hadoop2x-eclipse-plugin.git 把 hadoop2.6.0-eclipse-plugin.jar 放到eclipse plugin 目录中。 2.下载 hadoop2.6_x64_.zip http://dl.iteye.com/topics/download/d2b
- 如何看待一些知名博客推广软文的行为?
justjavac
博客
本文来自我在知乎上的一个回答:http://www.zhihu.com/question/23431810/answer/24588621
互联网上的两种典型心态:
当初求种像条狗,如今撸完嫌人丑
当初搜贴像条犬,如今读完嫌人软
你为啥感觉不舒服呢?
难道非得要作者把自己的劳动成果免费给你用,你才舒服?
就如同 Google 关闭了 Gooled Reader,那是
- sql优化总结
macroli
sql
为了是自己对sql优化有更好的原则性,在这里做一下总结,个人原则如有不对请多多指教。谢谢!
要知道一个简单的sql语句执行效率,就要有查看方式,一遍更好的进行优化。
一、简单的统计语句执行时间
declare @d datetime ---定义一个datetime的变量set @d=getdate() ---获取查询语句开始前的时间select user_id
- Linux Oracle中常遇到的一些问题及命令总结
超声波
oraclelinux
1.linux更改主机名
(1)#hostname oracledb 临时修改主机名
(2) vi /etc/sysconfig/network 修改hostname
(3) vi /etc/hosts 修改IP对应的主机名
2.linux重启oracle实例及监听的各种方法
(注意操作的顺序应该是先监听,后数据库实例)
&nbs
- hive函数大全及使用示例
superlxw1234
hadoophive函数
具体说明及示例参 见附件文档。
文档目录:
目录
一、关系运算: 4
1. 等值比较: = 4
2. 不等值比较: <> 4
3. 小于比较: < 4
4. 小于等于比较: <= 4
5. 大于比较: > 5
6. 大于等于比较: >= 5
7. 空值判断: IS NULL 5
- Spring 4.2新特性-使用@Order调整配置类加载顺序
wiselyman
spring 4
4.1 @Order
Spring 4.2 利用@Order控制配置类的加载顺序
4.2 演示
两个演示bean
package com.wisely.spring4_2.order;
public class Demo1Service {
}
package com.wisely.spring4_2.order;
public class