- 使用 PyTorch 和 Pandas 进行 Kaggle 房价预测
Clang's Blog
AIpytorchpandas人工智能
文章目录1、环境设置2、数据下载3、数据预处理4、模型构建5、训练和验证6、训练模型并生成预测结果7、完整代码在本篇博文中,我们将探索如何使用PyTorch和Pandas库,构建一个用于Kaggle房价预测的模型。我们将详细讨论数据加载、预处理、模型构建、训练、验证及最终预测的全过程。1、环境设置我们首先需要导入所需的库,包括用于数据处理的pandas和numpy,以及用于深度学习的torch。i
- python学习DAY22打卡
星仔编程
python学习打卡学习
作业:自行学习参考如何使用kaggle平台,写下使用注意点,并对下述比赛提交代码kaggle泰坦尼克号人员生还预测importwarningswarnings.filterwarnings("ignore")#忽略警告信息#数据处理清洗包importpandasaspdimportnumpyasnpimportrandomasrnd#可视化包importseabornassnsimportmatp
- 电商订单配送延迟预测项目:找出延时高风险订单
用机器学习预测电商订单是否延迟送达:来自巴西电商平台的真实案例项目背景在电商行业中,订单是否按时送达直接影响用户满意度与平台口碑。为了提高用户体验与物流效率,很多平台开始尝试利用机器学习手段提前预测哪些订单存在配送延迟的风险,从而提前介入、优化资源配置。本项目选用的是Kaggle上的BrazilianE-CommercePublicDataset数据集,包含10余张表,涵盖订单、客户、卖家、支付、
- python下载数据_用Python下载Kaggle数据
独家马仔
python下载数据
今天贡献一个小的技巧,就是如何用Python下载Kaggle数据.为什么要用Python下载Kaggle数据呢?对于一些数据量比较小的比赛,当然可以直接打开浏览器,然后在Kaggle的比赛主页上直接点击链接下载数据.但是对于某些数据很大的比赛,我希望能通过命令行或者Python直接下载数据.另外,有的时候我希望直接在服务器上通过命令行下载数据(服务器上没有浏览器).如果你熟悉Linux的话,你可能
- Linux 端 Kaggle 数据集下载:API 下载
读书读傻了哟
Linux学习笔记linux运维服务器
Linux端Kaggle数据集下载:API下载一、准备好kaggle.json文件 1.登录Kaggle官网。 2.点击右上角头像->YourProfile->Account->CreateNewToken,即可生成kaggle.json文件(PS:每次生成的.json文件内容不一样,要保证服务器端的文件是最新的)。 3.在服务器端/home/username创建.kaggle文件夹,将生成
- 图像分类实战:基于ResNet实现猫狗识别
风亦辰739
从零开始掌握深度学习:理论+实战分类数据挖掘人工智能
图像分类实战:基于ResNet实现猫狗识别(含完整PyTorch代码)图像分类是计算机视觉中最基础也是最经典的任务之一。今天我们将带你实战体验如何使用PyTorch和ResNet构建一个猫狗识别系统。从数据预处理、模型构建、训练调优到模型保存和预测,每一步都细致讲解,带你快速上手!一、任务目标使用Kaggle猫狗数据集进行图像分类;构建基于ResNet18的分类模型;实现完整训练与验证流程;进行单
- 【动手学深度学习】4.10 实战Kaggle比赛:预测房价
XiaoJ1234567
《动手学深度学习》深度学习人工智能
目录4.10实战Kaggle比赛:预测房价1)数据预处理2)模型定义与训练3)模型评估与预测4)模型训练与预测提交5)示例超参数(可调)4.10实战Kaggle比赛:预测房价数据来源:Kaggle房价预测比赛.1)数据预处理读取数据importpandasaspdtrain_data=pd.read_csv('../data/kaggle_house_pred_train.csv')test_da
- 6.kaggle实战之房价预测
温柔济沧海
深度学习神经网络人工智能python深度学习
importhashlibimportosimporttarfileimportzipfileimportrequestsimportnumpyasnpimportpandasaspdimporttorchimportnumpyasnpfromtorchimportnnimportmatplotlib.pyplotaspltfromtorch.utils.dataimportDataLoader,
- Python数据分析学习笔记:字符串统计
NIKEeri
pythonpandas字符串匹配python数据分析学习
一、题目来源KagglePandas-Exercise:SummaryFunctionsandMaps章节二、题目要求描述一瓶葡萄酒时,可用的词汇有限。哪种词出现频率更高:“tropical”还是“fruity”?统计description列中这两个词的出现次数。忽略大小写。三、我的思路(使用str.contains统计总次数)tropical_count=reviews['description
- 使用 Bank Churn 数据集进行二元分类
一、前言分类任务:预测客户是继续使用其帐户还是关闭帐户(例如,流失)项目地址:https://www.kaggle.com/competitions/playground-series-s4e1二、具体步骤(一)数据导入与预览importpandasaspdimportnumpyasnpimportmatplotlib.pylabaspltimportseabornassnsfromsklearn
- 【技术派专享】并行智算云:RTX 5090 免费算力深度评测 + 实战指南▎ 为什么开发者需要关注云端算力?
山顶望月川
人工智能云计算
在微调Llama3、训练扩散模型或跑Kaggle比赛时,本地显卡(比如RTX3090/4090)常面临显存不足、训练慢、散热差等问题。而购买多卡服务器成本极高(一台8×A100机器年成本超20万),对个人和小团队极不友好。并行智算云近期推出的“开发者扶持计划”,提供RTX5090免费算力(显存32GB,FP32算力60TFLOPS),实测比4090训练速度快1.8倍,且支持多卡并行。下面从技术优势
- Python 机器学习实战:泰坦尼克号生还者预测 (从数据探索到模型构建)
程序员阿超的博客
Pythonpython机器学习开发语言泰坦尼克号KaggleScikit-learn实战教程
引言:挑战介绍泰坦尼克号的沉没是历史上最著名的海难之一。除了其悲剧色彩,它还为数据科学提供了一个经典且引人入胜的入门项目。Kaggle平台上的“Titanic:MachineLearningfromDisaster”竞赛,要求我们利用乘客数据来预测哪些人更有可能在这场灾难中幸存。这是一个典型的二元分类问题:目标变量Survived只有两个值,0(遇难)或1(生还)。这个项目之所以经典,是因为它涵盖
- DAY 43 复习日
yizhimie37
python训练营打卡笔记深度学习
@浙大疏锦行https://blog.csdn.net/weixin_45655710第一步:寻找并准备图像数据集在Kaggle等平台上,你可以找到大量用于图像分类任务的数据集,例如英特尔图像分类数据集(IntelImageClassification)或手写数字识别数据集(DigitRecognizer)。对于初学者,一个更便捷的选择是使用像TensorFlow或PyTorch这样深度学习框架内
- 四个机器学习模型对比道路裂缝检测识别分类模型
深度学习乐园
深度学习实战项目机器学习分类人工智能
完整源码项目包获取→点击文章末尾名片!一、课题综述1.1.课题简介在机器学习的研究领域中,传统分类算法模型数量众多,适合的应用场景也各不相同。1.2.课题目标(示例)本课题使用的数据集来自于数据分析与数据挖掘竞赛Kaggle,该竞赛为数据科学领域著名的国际性赛事之一。课题使用的数据集为带标签的图像数据集,包含带有裂痕和不带有裂痕的桥梁、墙和人行道图片。课题的目标为对于目标数据集,搭建相应的传统机器
- 学习AI机器学习所需的数学基础
frostmelody
机器学习小知识点人工智能学习机器学习
一、机器学习岗位的数学需求矩阵机器学习岗位研究型职位工业界职位DeepMind/Meta/Google研究部门研究科学家/研究工程师普通科技公司机器学习工程师/数据科学家需硕士/博士数学水平本科数学基础二、数学需求深度解析1.研究型职位(需深度数学)学历要求:数学/物理/计算机/统计/工程本科基础硕士/博士优先(Kaggle调查显示博士占比高)薪资关联:学历与收入呈正相关2.工业界职位(基础数学)
- LightGBM:极速梯度提升机——结构化数据建模的终极武器
大千AI助手
人工智能Python#OTHER随机森林算法机器学习决策树人工智能GBDTLightGBM
基于直方图与Leaf-wise生长的高效GBDT实现,横扫Kaggle与工业场景一、为什么需要LightGBM?GBDT的瓶颈传统梯度提升树(如XGBoost)在处理海量数据时面临两大痛点:训练速度慢:需预排序特征&层次生长(Level-wise)内存消耗高:存储特征值与分裂点信息LightGBM的诞生微软亚洲研究院于2017年开源,核心目标:✅训练效率提升10倍✅内存占用降低50%✅保持与XGB
- Python打卡训练营-Day43-复习日
traMpo1ine
python
@浙大疏锦行作业kaggle找到一个图像数据集,用cnn网络进行训练并且用grad-cam做可视化进阶:并拆分成多个文件
- DAY 43 复习日 CNN训练与Grad-CAM可视化(模块化实现)
沐兮兮兮
cnn人工智能神经网络
目录Kaggle图像分类项目:项目结构一、数据准备模块1.config/paths.py2.data/preprocessing.py3.data/dataset.py二、模型定义模块1.models/cnn_model.py2.models/grad_cam.py三、训练脚本train.py四、可视化模块1.utils/visualization.py2.visualize.py五、实用工具ut
- Kaggle量化比赛复盘: Optiver - Trading at the Close
熬夜造bug
AI领域应用金融人工智能机器学习深度学习
目录前言一、开源方案1.6th获奖方案(代码未开源)1.1.特征工程(关键代码)1.2.方案解析2.7th获奖方案(开源)2.1.特征工程2.2.特征工程3.9th获奖方案(半开源)3.1.特征构造3.2.特征筛选3.3.模型3.4.zero_sum(标签后处理)4.14th获奖方案(开源)4.1.方案开源链接4.2.zero_sum(标签后处理)5.15th获奖方案(半开源)5.1.特征工程5.
- Kaggle金牌方案复现:CGO-Transformer-GRU多模态融合预测实战
1背景分析在2023年Kaggle"GlobalMultimodalDemandForecastingChallenge"竞赛中,CGO-Transformer-GRU方案以领先第二名1.8个百分点的绝对优势夺冠,创下该赛事三年来的最佳成绩。本方案创新性地融合了协方差引导优化(CGO)、注意力机制和时序建模三大技术模块,解决了多模态数据融合中的关键挑战:模态对齐、特征冲突和时序依赖建模。(1)多模
- day43python打卡
qq_58459892
py打开学习pytorchpython深度学习算法人工智能
作业:kaggle找到一个图像数据集,用cnn网络进行训练并且用grad-cam做可视化进阶:并拆分成多个文件importosimporttorchimporttorch.optimasoptimimporttorch.nnasnnimporttorch.nn.functionalasFimporttorchvisionimporttorchvision.transformsastransform
- 大批量数据分析挖掘思路-Kaggle项目:保险销售预测
江枫渔火A
数据分析机器学习python
1、问题背景Kaggle在6月份的季赛是保险销售预测问题,其原始数据集381109条的保险销售,季赛由利用原数据集的模型生成扩充而来。本篇文章以原始数据集为基础,用以抛砖引玉,探讨该问题的高效解法。原始数据地址:HealthInsuranceCrossSellPrediction(kaggle.com)2、问题描述原文:我们的客户是一家为其客户提供健康保险的保险公司,现在他们需要您的帮助来建立一个
- Day22 复习日
cylat
python打卡机器学习人工智能python
一、如何使用kaggle平台:注册与个人资料注册方式:可以通过邮箱、Google、Facebook等方式注册。个人资料完善:尽量完整填写个人资料。竞赛板块竞赛选择兴趣与能力匹配:根据自己的兴趣和实际数据分析能力选择竞赛。对于初学者,建议从一些入门级或小型竞赛开始,逐步积累经验;有一定基础后再挑战更具难度的竞赛。竞赛规则研读:在参与竞赛前,务必仔细阅读竞赛的规则,包括比赛时间节点(报名时间、提交结果
- Coggle数据科学 | Kaggle赛题解析:识别数据引用与分类
双木的木
深度学习拓展阅读分类数据挖掘人工智能计算机视觉promptpython算法
本文来源公众号“Coggle数据科学”,仅用于学术分享,侵权删,干货满满。原文链接:Kaggle赛题解析:识别数据引用与分类赛题名称:MakeDataCount-FindingDataReferences赛题类型:自然语言处理、信息检索赛题任务:从科学论文的全文中提取所有被引用的研究数据,并根据上下文将其分类为初级引用(Primary)或次级引用(Secondary)。https://www.ka
- python打卡训练营打卡记录day22
m0_74839150
python开发语言
复习日仔细回顾一下之前21天的内容,没跟上进度的同学补一下进度。作业:自行学习参考如何使用kaggle平台,写下使用注意点,并对下述比赛提交代码importpandasaspdimportnumpyasnpfromsklearn.model_selectionimporttrain_test_split,GridSearchCVfromsklearn.preprocessingimportStan
- 【慧游鲁博】团队记录5
哇哦哇哦~~
创新实训团队记录软件工程团队开发
文章目录进度总览完成细节Part11.图片上传与预加载功能2.前端功能扩展与密码修改页面3.DeepSeek模型微调与Kaggle实验4.前端组件化重构5.用户认证与信息管理完成细节Part21.多模态交互·语音输入,完善智能导览系统2.后台管理系统的数据分析模块3.用户画像分析功能4.用户系统基础架构5.剧情管理核心功能6.从Kaggle微调到模型调用进度总览任务要点完成情况多模态交互图片上传;
- Kaggle-Predicting Optimal Fertilizers-(多分类+xgboost+同一特征值多样性)
美少女zss
分类数据挖掘人工智能
PredictingOptimalFertilizers题意:给出土壤的特性,预测出3种最佳的肥料数据处理:1.有数字型和类别型,类别不能随意换成数字,独热编码。cat可以直接处理category类型。2.构造一些相关土壤特性特征3.由于label是category类型,但是xgb不可以处理category类型,因此需要先编码,最后求出结果之后再解码。建立模型:1.catboost交叉验证、xgb
- 使用python代码实现电商用户行为分析
Vinceri
python开发语言
使用python实现电商用户行为分析描述:分析电商平台用户行为数据(点击、购买、收藏等),使用Pandas和Matplotlib统计用户活跃时段、热销商品类别,并用Seaborn绘制行为趋势图。工具:Pandas,NumPy,Matplotlib/Seaborn数据集:可从Kaggle获取用户行为日志(如ecommerce-behavior-data)以下是一个完整的电商用户行为分析Python实
- DAY15 超大力王爱学Python
超大力王
超大力王爱学Pythonpython开发语言
仔细回顾一下之前14天的内容,没跟上进度的同学补一下进度。作业:尝试找到一个kaggle或者其他地方的结构化数据集,用之前的内容完成一个全新的项目,这样你也是独立完成了一个专属于自己的项目。要求:有数据地址的提供数据地址,没有地址的上传网盘贴出地址即可。尽可能与他人不同,优先选择本专业相关数据集探索一下开源数据的网站有哪些?Titanic-MachineLearningfromDisaster|K
- python打卡day43
作业:kaggle找到一个图像数据集,用cnn网络进行训练并且用grad-cam做可视化导入包importtorchimporttorch.nnasnnimporttorch.optimasoptimfromtorchvisionimportdatasets,transformsfromtorch.utils.dataimportDataLoaderimportmatplotlib.pyplota
- java类加载顺序
3213213333332132
java
package com.demo;
/**
* @Description 类加载顺序
* @author FuJianyong
* 2015-2-6上午11:21:37
*/
public class ClassLoaderSequence {
String s1 = "成员属性";
static String s2 = "
- Hibernate与mybitas的比较
BlueSkator
sqlHibernate框架ibatisorm
第一章 Hibernate与MyBatis
Hibernate 是当前最流行的O/R mapping框架,它出身于sf.net,现在已经成为Jboss的一部分。 Mybatis 是另外一种优秀的O/R mapping框架。目前属于apache的一个子项目。
MyBatis 参考资料官网:http:
- php多维数组排序以及实际工作中的应用
dcj3sjt126com
PHPusortuasort
自定义排序函数返回false或负数意味着第一个参数应该排在第二个参数的前面, 正数或true反之, 0相等usort不保存键名uasort 键名会保存下来uksort 排序是对键名进行的
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8&q
- DOM改变字体大小
周华华
前端
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- c3p0的配置
g21121
c3p0
c3p0是一个开源的JDBC连接池,它实现了数据源和JNDI绑定,支持JDBC3规范和JDBC2的标准扩展。c3p0的下载地址是:http://sourceforge.net/projects/c3p0/这里可以下载到c3p0最新版本。
以在spring中配置dataSource为例:
<!-- spring加载资源文件 -->
<bean name="prope
- Java获取工程路径的几种方法
510888780
java
第一种:
File f = new File(this.getClass().getResource("/").getPath());
System.out.println(f);
结果:
C:\Documents%20and%20Settings\Administrator\workspace\projectName\bin
获取当前类的所在工程路径;
如果不加“
- 在类Unix系统下实现SSH免密码登录服务器
Harry642
免密ssh
1.客户机
(1)执行ssh-keygen -t rsa -C "
[email protected]"生成公钥,xxx为自定义大email地址
(2)执行scp ~/.ssh/id_rsa.pub root@xxxxxxxxx:/tmp将公钥拷贝到服务器上,xxx为服务器地址
(3)执行cat
- Java新手入门的30个基本概念一
aijuans
javajava 入门新手
在我们学习Java的过程中,掌握其中的基本概念对我们的学习无论是J2SE,J2EE,J2ME都是很重要的,J2SE是Java的基础,所以有必要对其中的基本概念做以归纳,以便大家在以后的学习过程中更好的理解java的精髓,在此我总结了30条基本的概念。 Java概述: 目前Java主要应用于中间件的开发(middleware)---处理客户机于服务器之间的通信技术,早期的实践证明,Java不适合
- Memcached for windows 简单介绍
antlove
javaWebwindowscachememcached
1. 安装memcached server
a. 下载memcached-1.2.6-win32-bin.zip
b. 解压缩,dos 窗口切换到 memcached.exe所在目录,运行memcached.exe -d install
c.启动memcached Server,直接在dos窗口键入 net start "memcached Server&quo
- 数据库对象的视图和索引
百合不是茶
索引oeacle数据库视图
视图
视图是从一个表或视图导出的表,也可以是从多个表或视图导出的表。视图是一个虚表,数据库不对视图所对应的数据进行实际存储,只存储视图的定义,对视图的数据进行操作时,只能将字段定义为视图,不能将具体的数据定义为视图
为什么oracle需要视图;
&
- Mockito(一) --入门篇
bijian1013
持续集成mockito单元测试
Mockito是一个针对Java的mocking框架,它与EasyMock和jMock很相似,但是通过在执行后校验什么已经被调用,它消除了对期望 行为(expectations)的需要。其它的mocking库需要你在执行前记录期望行为(expectations),而这导致了丑陋的初始化代码。
&nb
- 精通Oracle10编程SQL(5)SQL函数
bijian1013
oracle数据库plsql
/*
* SQL函数
*/
--数字函数
--ABS(n):返回数字n的绝对值
declare
v_abs number(6,2);
begin
v_abs:=abs(&no);
dbms_output.put_line('绝对值:'||v_abs);
end;
--ACOS(n):返回数字n的反余弦值,输入值的范围是-1~1,输出值的单位为弧度
- 【Log4j一】Log4j总体介绍
bit1129
log4j
Log4j组件:Logger、Appender、Layout
Log4j核心包含三个组件:logger、appender和layout。这三个组件协作提供日志功能:
日志的输出目标
日志的输出格式
日志的输出级别(是否抑制日志的输出)
logger继承特性
A logger is said to be an ancestor of anothe
- Java IO笔记
白糖_
java
public static void main(String[] args) throws IOException {
//输入流
InputStream in = Test.class.getResourceAsStream("/test");
InputStreamReader isr = new InputStreamReader(in);
Bu
- Docker 监控
ronin47
docker监控
目前项目内部署了docker,于是涉及到关于监控的事情,参考一些经典实例以及一些自己的想法,总结一下思路。 1、关于监控的内容 监控宿主机本身
监控宿主机本身还是比较简单的,同其他服务器监控类似,对cpu、network、io、disk等做通用的检查,这里不再细说。
额外的,因为是docker的
- java-顺时针打印图形
bylijinnan
java
一个画图程序 要求打印出:
1.int i=5;
2.1 2 3 4 5
3.16 17 18 19 6
4.15 24 25 20 7
5.14 23 22 21 8
6.13 12 11 10 9
7.
8.int i=6
9.1 2 3 4 5 6
10.20 21 22 23 24 7
11.19
- 关于iReport汉化版强制使用英文的配置方法
Kai_Ge
iReport汉化英文版
对于那些具有强迫症的工程师来说,软件汉化固然好用,但是汉化不完整却极为头疼,本方法针对iReport汉化不完整的情况,强制使用英文版,方法如下:
在 iReport 安装路径下的 etc/ireport.conf 里增加红色部分启动参数,即可变为英文版。
# ${HOME} will be replaced by user home directory accordin
- [并行计算]论宇宙的可计算性
comsci
并行计算
现在我们知道,一个涡旋系统具有并行计算能力.按照自然运动理论,这个系统也同时具有存储能力,同时具备计算和存储能力的系统,在某种条件下一般都会产生意识......
那么,这种概念让我们推论出一个结论
&nb
- 用OpenGL实现无限循环的coverflow
dai_lm
androidcoverflow
网上找了很久,都是用Gallery实现的,效果不是很满意,结果发现这个用OpenGL实现的,稍微修改了一下源码,实现了无限循环功能
源码地址:
https://github.com/jackfengji/glcoverflow
public class CoverFlowOpenGL extends GLSurfaceView implements
GLSurfaceV
- JAVA数据计算的几个解决方案1
datamachine
javaHibernate计算
老大丢过来的软件跑了10天,摸到点门道,正好跟以前攒的私房有关联,整理存档。
-----------------------------华丽的分割线-------------------------------------
数据计算层是指介于数据存储和应用程序之间,负责计算数据存储层的数据,并将计算结果返回应用程序的层次。J
&nbs
- 简单的用户授权系统,利用给user表添加一个字段标识管理员的方式
dcj3sjt126com
yii
怎么创建一个简单的(非 RBAC)用户授权系统
通过查看论坛,我发现这是一个常见的问题,所以我决定写这篇文章。
本文只包括授权系统.假设你已经知道怎么创建身份验证系统(登录)。 数据库
首先在 user 表创建一个新的字段(integer 类型),字段名 'accessLevel',它定义了用户的访问权限 扩展 CWebUser 类
在配置文件(一般为 protecte
- 未选之路
dcj3sjt126com
诗
作者:罗伯特*费罗斯特
黄色的树林里分出两条路,
可惜我不能同时去涉足,
我在那路口久久伫立,
我向着一条路极目望去,
直到它消失在丛林深处.
但我却选了另外一条路,
它荒草萋萋,十分幽寂;
显得更诱人,更美丽,
虽然在这两条小路上,
都很少留下旅人的足迹.
那天清晨落叶满地,
两条路都未见脚印痕迹.
呵,留下一条路等改日再
- Java处理15位身份证变18位
蕃薯耀
18位身份证变15位15位身份证变18位身份证转换
15位身份证变18位,18位身份证变15位
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 201
- SpringMVC4零配置--应用上下文配置【AppConfig】
hanqunfeng
springmvc4
从spring3.0开始,Spring将JavaConfig整合到核心模块,普通的POJO只需要标注@Configuration注解,就可以成为spring配置类,并通过在方法上标注@Bean注解的方式注入bean。
Xml配置和Java类配置对比如下:
applicationContext-AppConfig.xml
<!-- 激活自动代理功能 参看:
- Android中webview跟JAVASCRIPT中的交互
jackyrong
JavaScripthtmlandroid脚本
在android的应用程序中,可以直接调用webview中的javascript代码,而webview中的javascript代码,也可以去调用ANDROID应用程序(也就是JAVA部分的代码).下面举例说明之:
1 JAVASCRIPT脚本调用android程序
要在webview中,调用addJavascriptInterface(OBJ,int
- 8个最佳Web开发资源推荐
lampcy
编程Web程序员
Web开发对程序员来说是一项较为复杂的工作,程序员需要快速地满足用户需求。如今很多的在线资源可以给程序员提供帮助,比如指导手册、在线课程和一些参考资料,而且这些资源基本都是免费和适合初学者的。无论你是需要选择一门新的编程语言,或是了解最新的标准,还是需要从其他地方找到一些灵感,我们这里为你整理了一些很好的Web开发资源,帮助你更成功地进行Web开发。
这里列出10个最佳Web开发资源,它们都是受
- 架构师之面试------jdk的hashMap实现
nannan408
HashMap
1.前言。
如题。
2.详述。
(1)hashMap算法就是数组链表。数组存放的元素是键值对。jdk通过移位算法(其实也就是简单的加乘算法),如下代码来生成数组下标(生成后indexFor一下就成下标了)。
static int hash(int h)
{
h ^= (h >>> 20) ^ (h >>>
- html禁止清除input文本输入缓存
Rainbow702
html缓存input输入框change
多数浏览器默认会缓存input的值,只有使用ctl+F5强制刷新的才可以清除缓存记录。
如果不想让浏览器缓存input的值,有2种方法:
方法一: 在不想使用缓存的input中添加 autocomplete="off";
<input type="text" autocomplete="off" n
- POJO和JavaBean的区别和联系
tjmljw
POJOjava beans
POJO 和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Pure Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比 POJO复杂很多, Java Bean 是可复用的组件,对 Java Bean 并没有严格的规
- java中单例的五种写法
liuxiaoling
java单例
/**
* 单例模式的五种写法:
* 1、懒汉
* 2、恶汉
* 3、静态内部类
* 4、枚举
* 5、双重校验锁
*/
/**
* 五、 双重校验锁,在当前的内存模型中无效
*/
class LockSingleton
{
private volatile static LockSingleton singleton;
pri