- 【语义分割专栏】4:deeplab系列实战篇(附上完整可运行的代码pytorch)
fouen
语义分割pytorch人工智能python计算机视觉深度学习
文章目录前言Deeplab系列全流程代码模型搭建(model)backbone的搭建Deeplabv1Deeplabv2Deeplabv3Deeplabv3+数据处理(dataloader)评价指标(metric)训练流程(train)模型测试(test)效果图结语前言Deeplab系列原理篇讲解:【语义分割专栏】4:deeplab系列原理篇_deeplab系列详解-CSDN博客代码地址,下载可复
- 论文:SOLO: Segmenting Objects by Locations
小仙女呀灬
图像分割计算机视觉机器学习人工智能
作者摘要我们提出了一种新的、非常简单的实例分割方法。与许多其他密集预测任务(例如语义分割)相比,任意数量的实例使实例分割更具挑战性。为了预测每个实例的掩码,主流方法要么遵循“先检测后分割”策略(例如,MaskR-CNN),要么先预测嵌入向量,然后使用聚类技术将像素分组到单个实例中。我们通过引入“实例类别”的概念,从全新的角度看待实例分割的任务,它根据实例的位置和大小为实例中的每个像素分配类别,从而
- 深度学习在环境感知中的应用:案例与代码实现
让机器学会“看”世界:深度学习如何赋能环境感知?关键词深度学习|环境感知|计算机视觉|传感器融合|语义分割|目标检测|自动驾驶摘要环境感知是机器与外界互动的“眼睛和耳朵”——从自动驾驶汽车识别行人,到智能机器人避开障碍物,再到城市监控系统检测异常,所有智能系统都需要先“理解”环境,才能做出决策。传统环境感知方法依赖手工特征提取,难以应对复杂场景;而深度学习通过数据驱动的方式,让机器从大量数据中自动
- BEV+Transformer
Monkey PilotX
自动驾驶transformer深度学习人工智能
在自动驾驶系统中,BEV(Bird’sEyeView)+Transformer主要应用于感知与环境建图(Perception&SceneUnderstanding)环节,尤其是在多传感器融合、目标检测、语义分割、轨迹预测等任务中。在自动驾驶中的关键应用场景应用环节BEV+Transformer的作用感知(Perception)多摄像头图像融合成BEV视角,进行目标检测、语义分割预测(Predict
- RAG实战指南 Day 11:文本分块策略与最佳实践
在未来等你
RAG实战指南RAG检索增强生成文本分块语义分割文档处理NLP人工智能
【RAG实战指南Day11】文本分块策略与最佳实践文章标签RAG,检索增强生成,文本分块,语义分割,文档处理,NLP,人工智能,大语言模型文章简述文本分块是RAG系统构建中的关键环节,直接影响检索准确率。本文深入解析5种主流分块技术:1)固定大小分块的实现与调优技巧;2)基于语义的递归分割算法;3)文档结构感知的分块策略;4)LLM增强的智能分块方法;5)多模态混合内容处理方案。通过电商知识库和科
- 语义分割模型的轻量化与准确率提升研究
pk_xz123456
仿真模型深度学习算法transformer深度学习人工智能算法数据结构
语义分割模型的轻量化与准确率提升研究1.引言语义分割是计算机视觉领域的核心任务之一,它要求模型为图像中的每个像素分配一个类别标签。随着深度学习的发展,语义分割模型在多个领域得到了广泛应用,如自动驾驶、医学影像分析、遥感图像解译等。然而,现有的语义分割模型往往面临两个主要挑战:模型复杂度高导致难以部署在资源受限的设备上,以及准确率仍有提升空间以满足实际应用需求。本文将从模型轻量化和准确率提升两个角度
- 初始CNN(卷积神经网络)
超龄超能程序猿
机器学习cnn人工智能神经网络
卷积神经网络(ConvolutionalNeuralNetwork,简称CNN)作为深度学习的重要分支,在图像识别、目标检测、语义分割等领域大放异彩。无论是手机上的人脸识别解锁,还是自动驾驶汽车对道路和行人的识别,背后都离不开CNN的强大能力一、CNN诞生的背景与意义在CNN出现之前,传统的图像识别方法主要依赖人工提取特征,例如使用SIFT(尺度不变特征变换)、HOG(方向梯度直方图)等算法。这些
- ConvNeXT:面向 2020 年代的卷积神经网络
摘要视觉识别的“咆哮二十年代”始于VisionTransformer(ViT)的引入,ViT很快取代了ConvNet,成为图像分类任务中的最新最强模型。然而,vanillaViT在应用于目标检测、语义分割等通用计算机视觉任务时面临困难。HierarchicalTransformer(如SwinTransformer)重新引入了若干ConvNet的先验知识,使Transformer成为实用的通用视觉
- Python机器学习实战——逻辑回归(附完整代码和结果)
小白熊XBX
机器学习机器学习python逻辑回归
Python机器学习实战——逻辑回归(附完整代码和结果)关于作者作者:小白熊作者简介:精通c#、Halcon、Python、Matlab,擅长机器视觉、机器学习、深度学习、数字图像处理、工业检测识别定位、用户界面设计、目标检测、图像分类、姿态识别、人脸识别、语义分割、路径规划、智能优化算法、大数据分析、各类算法融合创新等等。联系邮箱:
[email protected]科研辅导、知识付费答疑、个性化定制
- ResNet(Residual Network)
不想秃头的程序
神经网络语音识别人工智能深度学习网络残差网络神经网络
ResNet(ResidualNetwork)是深度学习中一种经典的卷积神经网络(CNN)架构,由微软研究院的KaimingHe等人在2015年提出。它通过引入残差连接(SkipConnection)解决了深度神经网络中的梯度消失问题,使得网络可以训练极深的模型(如上百层),并在图像分类、目标检测、语义分割等任务中取得了突破性成果。以下是ResNet的详细介绍:一、核心思想ResNet的核心创新是
- 【深度学习加速探秘】Winograd 卷积算法:让计算效率 “飞” 起来
heimeiyingwang
算法深度学习算法人工智能
一、为什么需要Winograd卷积算法?从“卷积计算瓶颈”说起在深度学习领域,卷积神经网络(CNN)被广泛应用于图像识别、目标检测、语义分割等任务。然而,卷积操作作为CNN的核心计算单元,其计算量巨大,消耗大量的时间和计算资源。随着模型规模不断增大,传统卷积算法的计算效率成为限制深度学习发展的一大瓶颈。Winograd卷积算法的出现,犹如一把利刃,直击传统卷积计算的痛点。它通过巧妙的数学变换,大幅
- 基于深度学习的智能图像语义分割系统:技术与实践
Blossom.118
机器学习与人工智能深度学习人工智能python分类音视频机器学习sklearn
前言图像语义分割是计算机视觉领域中的一个重要任务,其目标是将图像中的每个像素分配到预定义的语义类别中。这一技术在自动驾驶、医学影像分析、机器人视觉等多个领域有着广泛的应用。近年来,深度学习技术,尤其是卷积神经网络(CNN)及其变体,为图像语义分割带来了显著的改进。本文将详细介绍基于深度学习的智能图像语义分割系统的原理、实现方法以及实际应用案例。一、图像语义分割的基本概念1.1什么是图像语义分割?图
- [论文阅读]PIDNet: A Real-time Semantic Segmentation Network Inspired by PID Controllers
颜笑晏晏
论文阅读
1.摘要双分支网络结构已显示出其对实时语义分割任务的效率性和有效性。然而,低级细节和高级语义的直接融合将导致细节特征容易被周围上下文信息淹没,即本文中的超调(overshoot),这限制了现有两个分支模型的准确性的提高。在本文中,我们在卷积神经网络(CNN)和比例积分微分(PID)控制器之间架起了桥梁,并揭示了双分支网络只是一个比例积分(PI)控制器,当然也会存在类似的超调问题。为了解决这个问题,
- 【GitHub开源项目实战】DINOv2 自监督视觉模型深度解构:多任务零微调性能与多分辨率表征架构解析
观熵
GitHub开源项目实战github开源架构人工智能
DINOv2自监督视觉模型深度解构:多任务零微调性能与多分辨率表征架构解析关键词DINOv2、自监督视觉模型、ViT、多分辨率表示、语义分割、深度估计、Zero-shot、图像表示学习、OpenCLIP替代、MetaAI摘要DINOv2是由MetaAIResearch推出的下一代自监督视觉基础模型,在保持不依赖人工标签的前提下,显著提升了多任务性能,尤其在语义分割、图像分类、深度估计等下游任务中超
- python批量修改xml文件
爱上答复
xml
计算机视觉领域是当下比教热门的一个研究领域,包括目标检测,实例分割,语义分割等,不可避免会涉及到xml文件的修改,如果一两个文件的话,修改起来还算简答,但是实际情况中,远不止一个文件,且一个文件中也会包含多组属性。所以直接上代码,我习惯用pycharm编辑器来实现。importxml.dom.minidomforiinrange(0,100,5):path1="xxx"+str(i)+".xml"
- 鸿蒙开发实战之Image Kit重构美颜相机图像处理管线
harmonyos-next
一、核心能力突破通过ImageKit实现三大技术革新:硬件加速处理4K图像处理延迟降至16ms(NPU+GPU协同)支持10bitHDR管线(BT.2020色域)AI增强算法实时皮肤质感分析(98%毛孔保留率)智能背景重构(语义分割精度±1像素)跨平台一致性相同算法在麒麟/骁龙平台输出差异{updatePreview(result);});//超分辨率重建image.superResolution
- 【语义分割专栏】3:Segnet原理篇
fouen
语义分割人工智能计算机视觉深度学习神经网络pytorch
文章目录前言背景介绍Segnet核心剖析池化索引(poolingIndices)其他细节编码器解码器的对称结构Segnet模型代码结语参考资料前言本篇文章收录于语义分割专栏,如果对语义分割领域感兴趣的,可以去看看专栏,会对经典的模型以及代码进行详细的讲解哦!其中会包含可复现的代码!带大家深入语义分割的领域,将从原理,代码深入讲解,希望大家能从中有所收获,其中很多内容都包含着自己的一些想法以及理解,
- COCO-Stuff数据集:基于YOLOv5的多类别目标检测与分割实现
YOLO实战营
深度学习YOLO实战项目YOLO目标检测人工智能无人机计算机视觉数据挖掘ui
一、引言随着计算机视觉领域的不断发展,目标检测和语义分割已经成为深度学习中的两个关键任务。COCO-Stuff是一个包含多达172个类别的大型数据集,用于训练和评估计算机视觉算法。与传统的COCO数据集不同,COCO-Stuff不仅包含常见的物体检测任务,还增加了诸如“天空”、“树木”和“路面”等场景理解任务。通过对这个数据集的处理与利用,我们可以构建一个更加丰富的目标检测与语义分割系统。本博客将
- 深度学习之路——CNN卷积神经网络详解
DeepLinkDeepLink
Ai深度学习cnn人工智能
深度学习之路——CNN卷积神经网络详解前言卷积神经网络(ConvolutionalNeuralNetwork,CNN)作为深度学习领域的基础模型,推动了人工智能在图像、视频等方向的爆炸式发展。无论是图像分类、目标检测,还是语义分割、自动驾驶,CNN几乎无处不在。本文将带你系统了解CNN的基本原理、结构组成、常用网络、应用场景及简单代码实现。1.什么是CNN?CNN是一类专门处理类似网格结构数据(如
- 【仿生系统】qwen的仿生机器人解决方案
DFminer
机器人
收到完整需求后,我将从系统架构设计、算法实现路径、训练方法三个维度为您构建完整的仿生机器人解决方案。以下是分阶段实施方案:一、核心系统架构设计(模块化可进化架构)1.多模态感知引擎-视觉子系统:YOLOv8+SAM组合实现实时物体检测+场景语义分割-听觉子系统:Whisper+SpeakerEmbedding+情感识别三重处理-语言理解:基于LLaMA3的增量式语义解析(IncrementalPa
- 相机--RGB相机
猿饵块
数码相机
教程RGB--深度相机--激光雷达RGB相机原理:仅捕获红(R)、绿(G)、蓝(B)三通道的彩色图像,输出2D像素矩阵,无深度信息。核心作用:2D视觉任务:目标检测、图像分类、语义分割(如YOLO、ResNet)。优点:成本低:单传感器,硬件简单(如普通手机摄像头)。缺点:无深度信息:需额外算法或传感器获取3D数据。RGB相机和单目相机定义区别名称定义角度典型输出是否包含深度信息RGB相机数据格式
- 自动驾驶可行驶区域划分综述
吃旺旺雪饼的小男孩
自动驾驶自动驾驶人工智能机器学习
可行使区域划分1.数据采集与融合的深度解析1.1传感器类型与数据特性1.2多传感器融合方法2.环境感知与特征提取的细节2.1车道线检测技术2.2道路边界识别2.3障碍物检测与区域划分3.可行驶区域划分的实现3.1语义分割与几何建模3.2动态场景处理4.路径规划与决策的细节4.1局部路径规划4.2全局路径规划5.关键技术挑战的深入分析5.1复杂场景处理5.2实时性与计算优化5.3安全与冗余设计6.典
- 深度学习在建筑物提取中的应用综述
一瞬祈望
数据集深度学习人工智能
深度学习在建筑物提取中的应用综述目录深度学习在建筑物提取中的应用综述@[toc](目录)深度学习在建筑物提取中的应用综述一、建筑物提取简介二、深度学习方法分类1.语义分割(SemanticSegmentation)2.实例分割(InstanceSegmentation)3.边界感知分割(Boundary-awareSegmentation)4.多模态融合方法三、主流建筑物提取公开数据集及分析四、数
- 使用paddleX进行目标检测详解
狸不凡
机器学习深度学习神经网络
前言使用百度开源的paddleX工具,我们可以很容易快速训练出使用我们自己标注的数据的目标检测,图像分类,实例分割,语义分割的深度网络模型,本文,主要记录如何全流程使用pddleX来训练一个简单用于检测猫狗ppyolo_tiny模型。(一)数据准备这里的图片,我们直接在百度图片上搜索“猫狗”,随机下载10张图片,存到“JPEGImages文件夹”里。(二)使用labelme标注工具进行标注(1)l
- 高精地图与SLAM:依赖停车场高精地图提供结构信息,结合SLAM(同步定位与地图构建)技术实现实时定位与导航
百态老人
人工智能机器学习算法
基于现有资料,截至2025年3月1日,高精地图与SLAM技术在停车场场景中的结合应用主要体现在以下几个方面:1.SLAM的实时定位与增量地图构建SLAM技术通过激光雷达、摄像头、IMU等传感器实时采集环境特征(如停车场内的柱子、停车线、减速带等),并利用算法(如GraphSLAM、EKF、视觉语义分割)进行匹配定位,同时构建增量式地图。这种能力使得车辆即使初次进入未知停车场,也能在无GNSS信号的
- PaddleX 使用案例
非小号
AIscikit-learnpytorch人工智能python机器学习
以下是PaddleX的典型使用案例,涵盖图像分类、目标检测和语义分割三大场景,展示其从数据准备到模型部署的全流程:案例1:图像分类-垃圾分类识别场景:识别可回收垃圾、有害垃圾、厨余垃圾和其他垃圾四类图片。步骤1:数据准备与标注#1.创建项目目录mkdirgarbage_classification&&cdgarbage_classification#2.下载示例数据集(约2000张图片,4分类)w
- 飞桨(PaddlePaddle)在机器学习全流程(数据采集、处理、标注、建模、分析、优化)
非小号
AIpaddlepaddle机器学习人工智能
以下是飞桨(PaddlePaddle)在机器学习全流程(数据采集、处理、标注、建模、分析、优化)中常用的模型、函数及工具链,结合其生态特点分类说明:一、数据采集与标注1.数据采集工具PaddleX(图像/视频场景)功能:支持图像分类、目标检测、语义分割任务的数据标注,集成标注工具(如矩形框、多边形标注)。官网工具:PaddleX数据标注工具用法:通过图形化界面或命令行启动标注工具,输出标准VOC/
- 基于RGB与多光谱图像的农田语义分割技术研究及应用
中达瑞和-高光谱·多光谱
相机
随着智慧农业的发展,精准监测农田环境与作物生长状态成为关键需求。传统遥感技术受限于光谱分辨率与成像条件,难以满足精细化管理要求。本文以无人机搭载中达瑞和S810多光谱相机为技术载体,结合深度学习算法,提出单模态与多模态融合的农田语义分割方法。通过构建专用数据集与创新网络架构,显著提升了复杂场景下的分割精度与环境适应性,为精准农业提供了高效解决方案。一、研究背景与技术挑战农业生产的数字化监测依赖高精
- 动态神经网络(Dynamic NN)在边缘设备的算力分配策略:MoE架构实战分析
学术猿之吻
神经网络架构人工智能算法量子计算深度学习机器学习
一、边缘计算场景的算力困境在NVIDIAJetsonOrinNX(64TOPSINT8)平台上部署视频分析任务时,开发者面临三重挑战:动态负载波动视频流分辨率从480p到4K实时变化,帧率波动范围20-60FPS能效约束设备功耗需控制在15W以内(被动散热)多任务耦合典型场景需同步处理:目标检测(YOLOv8s)行为识别(SlowFast)语义分割(DeepLabv3)二、MoE架构的核心技术解析
- 助力移动机器人下游任务!Mobile-Seed:联合语义分割和边缘检测
3D视觉工坊
3D视觉从入门到精通计算机视觉
点击下方卡片,关注「3D视觉工坊」公众号选择星标,干货第一时间送达来源:3D视觉工坊添加小助理:dddvision,备注:语义分割,拉你入群。文末附行业细分群0.写在前面移动机器人经常需要定位语义目标和目标边缘,但大多数研究只集中在语义分割的部署上。今天笔者为大家推荐一篇开源工作,实现了语义分割和边缘检测的联合学习。下面一起来阅读一下这项工作~1.论文信息标题:Mobile-Seed:JointS
- Spring的注解积累
yijiesuifeng
spring注解
用注解来向Spring容器注册Bean。
需要在applicationContext.xml中注册:
<context:component-scan base-package=”pagkage1[,pagkage2,…,pagkageN]”/>。
如:在base-package指明一个包
<context:component-sc
- 传感器
百合不是茶
android传感器
android传感器的作用主要就是来获取数据,根据得到的数据来触发某种事件
下面就以重力传感器为例;
1,在onCreate中获得传感器服务
private SensorManager sm;// 获得系统的服务
private Sensor sensor;// 创建传感器实例
@Override
protected void
- [光磁与探测]金吕玉衣的意义
comsci
这是一个古代人的秘密:现在告诉大家
信不信由你们:
穿上金律玉衣的人,如果处于灵魂出窍的状态,可以飞到宇宙中去看星星
这就是为什么古代
- 精简的反序打印某个数
沐刃青蛟
打印
以前看到一些让求反序打印某个数的程序。
比如:输入123,输出321。
记得以前是告诉你是几位数的,当时就抓耳挠腮,完全没有思路。
似乎最后是用到%和/方法解决的。
而今突然想到一个简短的方法,就可以实现任意位数的反序打印(但是如果是首位数或者尾位数为0时就没有打印出来了)
代码如下:
long num, num1=0;
- PHP:6种方法获取文件的扩展名
IT独行者
PHP扩展名
PHP:6种方法获取文件的扩展名
1、字符串查找和截取的方法
1
$extension
=
substr
(
strrchr
(
$file
,
'.'
), 1);
2、字符串查找和截取的方法二
1
$extension
=
substr
- 面试111
文强chu
面试
1事务隔离级别有那些 ,事务特性是什么(问到一次)
2 spring aop 如何管理事务的,如何实现的。动态代理如何实现,jdk怎么实现动态代理的,ioc是怎么实现的,spring是单例还是多例,有那些初始化bean的方式,各有什么区别(经常问)
3 struts默认提供了那些拦截器 (一次)
4 过滤器和拦截器的区别 (频率也挺高)
5 final,finally final
- XML的四种解析方式
小桔子
domjdomdom4jsax
在平时工作中,难免会遇到把 XML 作为数据存储格式。面对目前种类繁多的解决方案,哪个最适合我们呢?在这篇文章中,我对这四种主流方案做一个不完全评测,仅仅针对遍历 XML 这块来测试,因为遍历 XML 是工作中使用最多的(至少我认为)。 预 备 测试环境: AMD 毒龙1.4G OC 1.5G、256M DDR333、Windows2000 Server
- wordpress中常见的操作
aichenglong
中文注册wordpress移除菜单
1 wordpress中使用中文名注册解决办法
1)使用插件
2)修改wp源代码
进入到wp-include/formatting.php文件中找到
function sanitize_user( $username, $strict = false
- 小飞飞学管理-1
alafqq
管理
项目管理的下午题,其实就在提出问题(挑刺),分析问题,解决问题。
今天我随意看下10年上半年的第一题。主要就是项目经理的提拨和培养。
结合我自己经历写下心得
对于公司选拔和培养项目经理的制度有什么毛病呢?
1,公司考察,选拔项目经理,只关注技术能力,而很少或没有关注管理方面的经验,能力。
2,公司对项目经理缺乏必要的项目管理知识和技能方面的培训。
3,公司对项目经理的工作缺乏进行指
- IO输入输出部分探讨
百合不是茶
IO
//文件处理 在处理文件输入输出时要引入java.IO这个包;
/*
1,运用File类对文件目录和属性进行操作
2,理解流,理解输入输出流的概念
3,使用字节/符流对文件进行读/写操作
4,了解标准的I/O
5,了解对象序列化
*/
//1,运用File类对文件目录和属性进行操作
//在工程中线创建一个text.txt
- getElementById的用法
bijian1013
element
getElementById是通过Id来设置/返回HTML标签的属性及调用其事件与方法。用这个方法基本上可以控制页面所有标签,条件很简单,就是给每个标签分配一个ID号。
返回具有指定ID属性值的第一个对象的一个引用。
语法:
&n
- 励志经典语录
bijian1013
励志人生
经典语录1:
哈佛有一个著名的理论:人的差别在于业余时间,而一个人的命运决定于晚上8点到10点之间。每晚抽出2个小时的时间用来阅读、进修、思考或参加有意的演讲、讨论,你会发现,你的人生正在发生改变,坚持数年之后,成功会向你招手。不要每天抱着QQ/MSN/游戏/电影/肥皂剧……奋斗到12点都舍不得休息,看就看一些励志的影视或者文章,不要当作消遣;学会思考人生,学会感悟人生
- [MongoDB学习笔记三]MongoDB分片
bit1129
mongodb
MongoDB的副本集(Replica Set)一方面解决了数据的备份和数据的可靠性问题,另一方面也提升了数据的读写性能。MongoDB分片(Sharding)则解决了数据的扩容问题,MongoDB作为云计算时代的分布式数据库,大容量数据存储,高效并发的数据存取,自动容错等是MongoDB的关键指标。
本篇介绍MongoDB的切片(Sharding)
1.何时需要分片
&nbs
- 【Spark八十三】BlockManager在Spark中的使用场景
bit1129
manager
1. Broadcast变量的存储,在HttpBroadcast类中可以知道
2. RDD通过CacheManager存储RDD中的数据,CacheManager也是通过BlockManager进行存储的
3. ShuffleMapTask得到的结果数据,是通过FileShuffleBlockManager进行管理的,而FileShuffleBlockManager最终也是使用BlockMan
- yum方式部署zabbix
ronin47
yum方式部署zabbix
安装网络yum库#rpm -ivh http://repo.zabbix.com/zabbix/2.4/rhel/6/x86_64/zabbix-release-2.4-1.el6.noarch.rpm 通过yum装mysql和zabbix调用的插件还有agent代理#yum install zabbix-server-mysql zabbix-web-mysql mysql-
- Hibernate4和MySQL5.5自动创建表失败问题解决方法
byalias
J2EEHibernate4
今天初学Hibernate4,了解了使用Hibernate的过程。大体分为4个步骤:
①创建hibernate.cfg.xml文件
②创建持久化对象
③创建*.hbm.xml映射文件
④编写hibernate相应代码
在第四步中,进行了单元测试,测试预期结果是hibernate自动帮助在数据库中创建数据表,结果JUnit单元测试没有问题,在控制台打印了创建数据表的SQL语句,但在数据库中
- Netty源码学习-FrameDecoder
bylijinnan
javanetty
Netty 3.x的user guide里FrameDecoder的例子,有几个疑问:
1.文档说:FrameDecoder calls decode method with an internally maintained cumulative buffer whenever new data is received.
为什么每次有新数据到达时,都会调用decode方法?
2.Dec
- SQL行列转换方法
chicony
行列转换
create table tb(终端名称 varchar(10) , CEI分值 varchar(10) , 终端数量 int)
insert into tb values('三星' , '0-5' , 74)
insert into tb values('三星' , '10-15' , 83)
insert into tb values('苹果' , '0-5' , 93)
- 中文编码测试
ctrain
编码
循环打印转换编码
String[] codes = {
"iso-8859-1",
"utf-8",
"gbk",
"unicode"
};
for (int i = 0; i < codes.length; i++) {
for (int j
- hive 客户端查询报堆内存溢出解决方法
daizj
hive堆内存溢出
hive> select * from t_test where ds=20150323 limit 2;
OK
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
问题原因: hive堆内存默认为256M
这个问题的解决方法为:
修改/us
- 人有多大懒,才有多大闲 (评论『卓有成效的程序员』)
dcj3sjt126com
程序员
卓有成效的程序员给我的震撼很大,程序员作为特殊的群体,有的人可以这么懒, 懒到事情都交给机器去做 ,而有的人又可以那么勤奋,每天都孜孜不倦得做着重复单调的工作。
在看这本书之前,我属于勤奋的人,而看完这本书以后,我要努力变成懒惰的人。
不要在去庞大的开始菜单里面一项一项搜索自己的应用程序,也不要在自己的桌面上放置眼花缭乱的快捷图标
- Eclipse简单有用的配置
dcj3sjt126com
eclipse
1、显示行号 Window -- Prefences -- General -- Editors -- Text Editors -- show line numbers
2、代码提示字符 Window ->Perferences,并依次展开 Java -> Editor -> Content Assist,最下面一栏 auto-Activation
- 在tomcat上面安装solr4.8.0全过程
eksliang
Solrsolr4.0后的版本安装solr4.8.0安装
转载请出自出处:
http://eksliang.iteye.com/blog/2096478
首先solr是一个基于java的web的应用,所以安装solr之前必须先安装JDK和tomcat,我这里就先省略安装tomcat和jdk了
第一步:当然是下载去官网上下载最新的solr版本,下载地址
- Android APP通用型拒绝服务、漏洞分析报告
gg163
漏洞androidAPP分析
点评:记得曾经有段时间很多SRC平台被刷了大量APP本地拒绝服务漏洞,移动安全团队爱内测(ineice.com)发现了一个安卓客户端的通用型拒绝服务漏洞,来看看他们的详细分析吧。
0xr0ot和Xbalien交流所有可能导致应用拒绝服务的异常类型时,发现了一处通用的本地拒绝服务漏洞。该通用型本地拒绝服务可以造成大面积的app拒绝服务。
针对序列化对象而出现的拒绝服务主要
- HoverTree项目已经实现分层
hvt
编程.netWebC#ASP.ENT
HoverTree项目已经初步实现分层,源代码已经上传到 http://hovertree.codeplex.com请到SOURCE CODE查看。在本地用SQL Server 2008 数据库测试成功。数据库和表请参考:http://keleyi.com/a/bjae/ue6stb42.htmHoverTree是一个ASP.NET 开源项目,希望对你学习ASP.NET或者C#语言有帮助,如果你对
- Google Maps API v3: Remove Markers 移除标记
天梯梦
google maps api
Simply do the following:
I. Declare a global variable:
var markersArray = [];
II. Define a function:
function clearOverlays() {
for (var i = 0; i < markersArray.length; i++ )
- jQuery选择器总结
lq38366
jquery选择器
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
- 基础数据结构和算法六:Quick sort
sunwinner
AlgorithmQuicksort
Quick sort is probably used more widely than any other. It is popular because it is not difficult to implement, works well for a variety of different kinds of input data, and is substantially faster t
- 如何让Flash不遮挡HTML div元素的技巧_HTML/Xhtml_网页制作
刘星宇
htmlWeb
今天在写一个flash广告代码的时候,因为flash自带的链接,容易被当成弹出广告,所以做了一个div层放到flash上面,这样链接都是a触发的不会被拦截,但发现flash一直处于div层上面,原来flash需要加个参数才可以。
让flash置于DIV层之下的方法,让flash不挡住飘浮层或下拉菜单,让Flash不档住浮动对象或层的关键参数:wmode=opaque。
方法如下:
- Mybatis实用Mapper SQL汇总示例
wdmcygah
sqlmysqlmybatis实用
Mybatis作为一个非常好用的持久层框架,相关资料真的是少得可怜,所幸的是官方文档还算详细。本博文主要列举一些个人感觉比较常用的场景及相应的Mapper SQL写法,希望能够对大家有所帮助。
不少持久层框架对动态SQL的支持不足,在SQL需要动态拼接时非常苦恼,而Mybatis很好地解决了这个问题,算是框架的一大亮点。对于常见的场景,例如:批量插入/更新/删除,模糊查询,多条件查询,联表查询,