- 【人工智能-14】OpenCV梯度处理、边缘检测、绘制轮廓、凸包检测、轮廓特征查找
m0_64233047
人工智能opencv计算机视觉
上一期【人工智能-13】OpenCV插值方法,边缘填充,图像矫正,图像掩膜,图像融合与噪点消除文章目录一、梯度处理1.图像梯度2.垂直边缘提取3.Sobel算子4.Laplacian算子二、边缘检测1.高斯模糊(降噪)2.计算梯度强度和方向3.非极大值抑制(NMS)4.双阈值检测5.边缘连接(滞后阈值)三、绘制轮廓1.什么是轮廓2.寻找轮廓3.轮廓绘制四、凸包检测1.穷举法2.QuickHull五
- opencv学习(图像金字塔)
蓝桉802
opencv学习人工智能
1.什么是图像金字塔图像金字塔是一种多尺度图像表示方法,通过对原始图像进行下采样(缩小)和上采样(放大),生成一系列不同分辨率的图像集合,形似“金字塔”(底部是高分辨率原始图像,向上逐渐变为低分辨率图像)。2.核心作用多尺度分析:不同分辨率的图像适用于检测不同大小的目标(如大目标在低分辨率图像中更易识别,小目标需要高分辨率)。图像融合:结合不同尺度的图像信息(如拉普拉斯金字塔可无缝融合两张图像的细
- 两个相机的视野 拼接算法
C++ 老炮儿的技术栈
计算机视觉数码相机人工智能
两个相机的视野拼接算法是计算机视觉领域中用于将多个相机拍摄的图像融合为一幅宽视野、高分辨率全景图像的技术,广泛应用于全景监控、虚拟现实、自动驾驶等场景。其核心是通过对齐、融合不同视角的图像,消除重叠区域的差异,生成自然连贯的拼接结果。以下从算法流程、关键技术、常见方法及挑战等方面详细介绍:一、算法核心流程两个相机的视野拼接通常遵循以下步骤,流程可分为预处理→特征匹配→图像对齐→图像融合→后处理:1
- opencv学习(图像处理)
目录1.图像的截取2.颜色通道的提取3.图像边界填充4.数值计算(OpenCV图像数组的算术运算与OpenCV内置加法函数)5.图像融合(两个图像只有shape值相同才能融合)6.图像阈值(通过设定一个或多个阈值,将图像中的像素值划分为不同的类别(通常是黑白两个类别),从而简化图像信息,突出感兴趣的区域。)7.图像平滑(模糊,主动降低图像清晰度,目的是去除噪声、弱化细节)(1)均值滤波(2)方框滤
- BEV+Transformer
Monkey PilotX
自动驾驶transformer深度学习人工智能
在自动驾驶系统中,BEV(Bird’sEyeView)+Transformer主要应用于感知与环境建图(Perception&SceneUnderstanding)环节,尤其是在多传感器融合、目标检测、语义分割、轨迹预测等任务中。在自动驾驶中的关键应用场景应用环节BEV+Transformer的作用感知(Perception)多摄像头图像融合成BEV视角,进行目标检测、语义分割预测(Predict
- OpenCV计算机视觉实战(12)——图像金字塔与特征缩放
AI technophile
OpenCV项目实践指南计算机视觉opencv人工智能
OpenCV计算机视觉实战(12)——图像金字塔与特征缩放0.前言1.高斯金字塔1.1应用场景1.2实现过程2.拉普拉斯金字塔2.1应用场景2.2实现过程3.图像融合实例3.1应用场景3.2实现过程小结系列链接0.前言图像金字塔技术通过对原始图像按不同分辨率进行多层次表示,不仅能提升计算效率,还能为图像融合、检测与识别提供多尺度特征。高斯金字塔(GaussianPyramid)用于构建多级低通图像
- iOS HDR 与 Deep Fusion 图像合成流程详解:从捕获到输出的实战路径
iOSHDR与DeepFusion图像合成流程详解:从捕获到输出的实战路径关键词:iOSHDR、DeepFusion、图像合成流程、AVCapturePhotoBracket、高动态范围、图像融合、iPhoneA系列芯片、图像信号处理、ISPPipeline摘要:HDR与DeepFusion是Apple在图像计算方向的重要成果,它们通过多帧图像融合和复杂的ISP处理流程,实现了高亮保留、暗部提亮、
- 学习笔记丨数字信号处理(DSP)的应用——图像处理篇
棱镜研途
学习笔记信号处理图像处理人工智能
DSP在图像处理中的应用:核心技术解析数字信号处理(DSP)是图像处理的核心技术之一,广泛应用于增强、压缩、分析和识别等领域。以下是DSP在图像处理中的关键应用及技术细节:目录图像增强(ImageEnhancement)图像压缩(ImageCompression)特征提取(FeatureExtraction)实时图像处理(Real-TimeProcessing)多模态图像融合(Multimodal
- 使用 Simulink + MATLAB Function Block + Computer Vision Toolbox 实现一个基于多帧图像融合的低光图像增强系统仿真模型
amy_mhd
计算机视觉人工智能
目录图像增强与复原(ImageEnhancement&Restoration)场景实例:多帧图像融合技术用于低光环境下的图像增强一、目标与应用场景✅目标:✅应用场景:二、所需工具和环境三、核心技术原理多帧图像融合流程:四、Simulink实现步骤详解✅步骤1:准备图像数据✅步骤2:创建Simulink模型✅步骤3:添加多帧图像输入模块添加模块:函数代码(getFrames.m):✅步骤4:设计图像
- OpenCV CUDA模块图像处理------图像融合函数blendLinear()
村北头的码农
OpenCVopencv图像处理人工智能
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述该函数执行线性融合(加权平均)两个图像img1和img2,使用对应的权重图weights1和weights2。融合公式如下:result(x,y)=img1(x,y)⋅weights1(x,y)+img2(x,y)⋅weights2(x,y)result(x,y)
- 基于块匹配的全景图像拼接系统
挂科边缘
MATLAB项目实战matlab计算机视觉人工智能
文章目录前言一、理论基础1.图像匹配基于灰度的匹配基于模板的匹配基于变换域的匹配基于特征的匹配2.图像融合二、程序实现1.设计GUI界面2.载入图片3.图像匹配4.图像拼接总结源码下载前言为了获得超宽视角、大视野、高分辨率的图像,人们采用传统方式为采用价格高昂的特殊摄像器材进行拍摄,采集图像并进行处理。近年来,随着数码相机、智能手机等经济适用型手持成像硬件设备的普及,人们可以对某些场景方便地获得离
- 【AI论文】HunyuanCustom:一种多模态驱动的定制视频生成架构
东临碣石82
人工智能
摘要:定制视频生成旨在在灵活的用户定义条件下生成特定主题的视频,但现有方法往往难以实现身份一致性和有限的输入方式。在本文中,我们提出了HunyuanCustom,这是一个多模态定制视频生成框架,强调主题一致性,同时支持图像、音频、视频和文本条件。基于HunyuanVideo,我们的模型首先通过引入基于LLaVA的文本图像融合模块来解决图像文本条件生成任务,以增强多模态理解,以及一个图像ID增强模块
- 基于小波变化图像融合
qq2108462953
matlabmatlab
提示:论文复现,写文记录。基于小波变化图像融合前言一、领域平均滤波二、小波阈值阈值选取三、效果展示领域平均滤波小波软阈值滤波领域平均与小波软阈值融合峰值信噪比前言行文思路:使用sym小波对图像进行3层分解。在小波域进行领域平均滤波域小波软阈值滤波,最后将两者融合。提示:以下是本篇文章正文内容,如有错误请指正一、领域平均滤波邻域平均法是一种空间域局部处理算法.在含噪图像中,对于位置(i,j)处的像素
- OpenCV 图像金字塔:原理、代码实现与应用场景
2201_75491841
opencv人工智能计算机视觉
在计算机视觉和图像处理领域,OpenCV作为一款强大的开源库,提供了丰富的工具和算法来处理图像数据。其中,图像金字塔是一种非常重要的数据结构,在图像融合、目标检测、图像压缩等多个方面都有着广泛的应用。本文将深入探讨OpenCV中图像金字塔的原理、代码实现及其常见应用场景。一、图像金字塔原理图像金字塔是一系列以金字塔形状排列的、分辨率逐步降低的图像集合。它通过对原始图像不断进行下采样(缩小图像尺寸)
- CVPR王炸组合:特征融合+目标检测!想发高分就看这篇
深度之眼
深度学习干货人工智能干货计算机视觉目标跟踪人工智能特征融合
最近发现用特征融合做目标检测有了不少新突破,比如CVPR上的红外和可见光图像融合方法MetaFusion,以及Neurips上节约了99%传输成本的新型合作检测框架FFNet。这主要得益于,特征融合在目标检测中整合了不同层或尺度的特征信息(既包含低层的细节信息,也包含高层的语义信息),这样不仅可以提高检测的准确性,增强模型对复杂场景和目标的鲁棒性,减少误检和漏检,还可以降低计算复杂度,加快检测速度
- 遥感图像处理笔记之【图像融合综述】
这可就有点麻烦了
遥感图像图像处理笔记人工智能深度学习
遥感图像处理学习(10)之【多模态图像融合综述】前言遥感系列第10篇。遥感图像处理方向的学习者可以参考或者复刻本文初编辑于2024年1月16日本文再编辑于2024年1月17日:修改了论文域名地址总结:多模态遥感图像相关的中文综述,真是少的可怜文章标题:以图像为主的多模态感知与多源融合技术发展及应用综述文章地址:
- pythonopencv实现图像融合_OpenCV_Python官方文档7——图像融合
TsingGuo 郭卿
OpenCV-PythonTutorialshttps://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_tutorials.html图像叠加(融合)主要函数被叠加的两张图片的大小、类型(高度/宽度/通道数)必须相同。但是如果这两张图片大小不相同,有什么方法解决?具体解决方法请点击此处查看cv2.add(img1,i
- 基于nsst图像融合代码_Opencv从零开始 - 「进阶篇」- 图像融合之泊松融合
weixin_39846364
基于nsst图像融合代码
✒️图像融合是图像处理中一个非常重要且有意思的技术,传统图像融合操作复杂,而且有时候效果不是很好,本文介绍的泊松融合是一种新型的图像融合方法,其操作简单而且融合的结果也非常好,大家可以参考本文一起尝试下~目录泊松融合无缝融合示例代码对比cv2.MIXED_CLONE和cv2.NORMAL_CLONE其他示例图:Sample-1,Sample-2泊松融合无缝融合✔️图像融合:背景:图像融合是图像处理
- OpenCV图像拼接(2)基于羽化(feathering)技术的图像融合算法拼接类cv::detail::FeatherBlender
村北头的码农
OpenCVopencv算法人工智能
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述cv::detail::FeatherBlender是OpenCV中用于图像拼接的一个类,它属于stitching模块的一部分。这个类实现了基于羽化(feathering)技术的图像融合算法,用于平滑地混合重叠区域中的图像,从而生成无缝的全景图。主要特点羽化技术:
- Python从0到100(六十八):Python OpenCV-图像边缘检测及图像融合
是Dream呀
opencvpython计算机视觉
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- 第八章 医学图像的配准和融合
数据分析能量站
图像处理图像
第八章医学图像的配准和融合一概述根据医学图像所提供的信息可将图像分为两类:解剖结构图像和功能图像。这两类图像各有优缺点:解剖图像以较高的分辨率提供脏器的解剖形态信息,但无法反映脏器的功能情况;功能图像的分辨率较差,但它提供的脏器功能代谢信息是解剖图像不能替代的。二医学图像配准与融合的关系图像配准是图像融合的先决条件,必须是先进行配准变换,才能实现准确的融合。三医学图像配准和融合在临床中的应用对使用
- 图像信息的配准和融合
数据分析能量站
图像处理class
第八章医学图像的配准和融合一概述根据医学图像所提供的信息可将图像分为两类:解剖结构图像和功能图像。这两类图像各有优缺点:解剖图像以较高的分辨率提供脏器的解剖形态信息,但无法反映脏器的功能情况;功能图像的分辨率较差,但它提供的脏器功能代谢信息是解剖图像不能替代的。二医学图像配准与融合的关系图像配准是图像融合的先决条件,必须是先进行配准变换,才能实现准确的融合。三医学图像配准和融合在临床中的应用对使用
- DEMF模型赋能多模态图像融合,助力肺癌高效分类
cv君
cv君独家视角AI内幕系列深度学习PET-CT集成分类肺部图像多模态图像融合
目录论文创新点实验设计1.可视化的研究设计2.样本选取和数据处理3.集成分类模型4.实验结果5.可视化结果图表总结可视化知识图谱在肺癌早期筛查中,计算机断层扫描(CT)和正电子发射断层扫描(PET)作为两种关键的影像学手段,分别提供了丰富的解剖结构信息和代谢活动信息。然而,单一模态的影像数据在诊断精准度上往往存在瓶颈,难以全面揭示病变特征。因此,如何将多模态影像数据有机融合,以提升诊断效能,已成为
- 机器视觉--图像的运算(加法)
C#Thread
机器视觉计算机视觉图像处理人工智能
一、引言在机器视觉领域,Halcon是一款功能强大且广泛应用的机器视觉软件库。图像的加法运算是其中一种基础且重要的操作,它在很多实际应用场景中都发挥着关键作用,比如图像增强、图像融合等。本文将深入探讨Halcon中图像加法运算的原理、实现方法,并通过具体的演示程序来帮助读者更好地理解和掌握这一操作。二、Halcon图像加法运算原理在Halcon中,图像的加法运算本质上是对两幅图像对应像素点的灰度值
- matlab图像融合技术研究
柠檬少少开发
人工智能计算机视觉
目录摘要......................................................................................................................1Abstract.....................................................................
- 2-88 基于matlab的四叉树加权聚焦多聚焦图像融合
'Matlab学习与应用
matlab工程应用matlab人工智能计算机视觉全聚焦图像加权焦点测量方法四叉树加权聚焦多聚焦图像融合
基于matlab的四叉树加权聚焦多聚焦图像融合,的四叉树分解策略将源图像被分解成四叉树结构中具有最佳尺寸的块。在这个树形结构中,使用一种新的加权焦点测量方法(名为加权修正拉普拉斯之和)来检测焦点区域。可以很好地从源图像中提取出来,并重建生成一幅全聚焦图像。由于采用了四叉树分解策略和新的加权焦点测量法,因此所提出的算法简单而有效。程序已调通,可直接运行。2-88加权焦点测量方法-小红书(xiaoho
- opencv-python 图像增强十七:泊松图像融合
CV-King
opencvpython人工智能算法计算机视觉numpy
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、概述二,实现:前言在深入探讨图像处理与计算机视觉领域的过程中,我们不禁对图像融合技术的精妙与实用性感到着迷。图像融合不仅是一项融合了美学与科学的技术手段,它还巧妙地将来源各异、特性不同的图像数据整合为一体,从而生成视觉上连贯且富含信息的合成图像。本篇博客文章旨在详尽解析OpenCV库中的一项高级功能cv2.seamle
- 深度学习100问39:阿达玛乘积在实际生活中的应用
不断持续学习ing
人工智能自然语言处理机器学习
嘿,你知道吗?阿达玛乘积在我们的生活中可有着不少神奇的应用呢!一、图像处理领域在图像处理的世界里,阿达玛乘积就像是一个神奇的画笔。比如说图像融合吧,想象一下,你有两张超酷的照片,一张是美丽的风景照,另一张是带有超炫艺术滤镜的图片。通过阿达玛乘积,就好像让这两张照片上的每个小像素都来一场“亲密合作”。结果呢,你就得到了一张既有清晰风景又带有独特艺术风格的全新照片,是不是很神奇?还有在计算机视觉中,阿
- python的图像融合及图像的类型转换学习笔记
yava_free
python学习笔记
一、图像加法运算1.Numpy库加法其运算方法是:目标图像=图像1+图像2,运算结果进行取模运算。当像素值255时,结果为对255取模的结果,例如:(255+64)%255=642.OpenCV加法运算另一种方法是直接调用OpenCV库实现图像加法运算,方法如下:目标图像=cv2.add(图像1,图像2)此时结果是饱和运算,即:当像素值255时,结果为255,例如:(255+64)=255两种方法
- 2-79 基于matlab的卷积稀疏的形态成分分析的医学图像融合
顶呱呱程序
matlab工程应用matlab计算机视觉人工智能CS-MCA模型医学图像融合卷积稀疏的形态成分分析
基于matlab的卷积稀疏的形态成分分析的医学图像融合,基于卷积稀疏性的形态分量分析(CS-MCA)的稀疏表示(SR)模型,用于像素级医学图像融合。通过CS-MCA模型使用预先学习的字典获得其卡通和纹理组件的CSR。然后,合并所有源图像的稀疏系数,并使用相应的字典重建融合分量。最后,实现融合图像计算。程序已调通,可直接运行。2-79卷积稀疏的形态成分分析-小红书(xiaohongshu.com)
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,