Machine Learning:最小二乘法数学原理及简单推导

Machine Learning:最小二乘法数学原理及简单推导

假设给定一系列散列值(数据集)记为D={(x1,y1),(x2,y2),(x3,y3),,,(xn,yn)},找到一个函数y=ax+b(也可记得f(x)=ax+b)使得f(x)函数尽可能拟合D。求解函数f(x)的方法很多种。最小二乘法寻找拟合函数f(x)的原理和思想关键:平方差之和最小,即使得

Q最小。即求解


最小值。

因为(x1,y1),(x2,y2),,,(xn,yn)均是已知变量,问题转化为求解Q=f(a,b)的最小值,即求解(a,b)点,使得f(a,b)值极小。
使用偏导数解f(a,b)极小值:


最终整理化简后,a,b值的公式为:

Machine Learning:最小二乘法数学原理及简单推导_第1张图片


Machine Learning:最小二乘法数学原理及简单推导_第2张图片



其中,

Machine Learning:最小二乘法数学原理及简单推导_第3张图片


Machine Learning:最小二乘法数学原理及简单推导_第4张图片


即xi,yi的算术平均值。

你可能感兴趣的:(Machine,Learning,数值分析,数学,matlab,AI,机器学习,深度学习,Deep,Learning,人工智能,Artificial,Intelligence,人工智能,深度学习,机器学习)