- pytorch学习笔记-自定义卷积
墨染枫
深度学习pytorch学习笔记
未完结的草稿———!大概是准备整合一下常见的层,整合完感觉就可以进行搭建了(还没进行到这一步所以不太确定版)(ps我将在完结这一篇的时候删除上面的小字and二编一下整篇文章的结构,如果看到了这部分文字也是很有缘分了/doge这一部分感觉也没啥好说的==也就是reshape部分值得注意一下?剩下的感觉就是了解一下用法就可以importtorchimporttorch.nnasnnimporttorc
- 【Pytorch学习笔记(三)】张量的运算(2)
一、引言在《张量的运算(1)》中我们已经学习了几种张量中常用的非算数运算如张量的索引与切片,张量的拼接等。本节我们继续学习张量的算术运算。二、张量的算术运算(一)对应元素的加减乘除在PyTorch中,张量的对应元素的算术运算包括加法、减法、乘法、除法等常见的数学运算。这些运算可以对张量进行逐元素操作(element-wise),也可以进行张量之间的广播运算(broadcasting)。1.逐元素操
- 【Pytorch学习笔记】模型模块09——VGG详解
越轨
Pytorch学习笔记pytorch学习笔记深度学习人工智能python
一、VGG核心设计原理小卷积核堆叠用多层3×3卷积替代大卷积核(如5×5/7×7)数学原理:2层3×3卷积感受野等效于5×5:RFout=(RFin−1)×stride+KRF_{out}=(RF_{in}-1)\timesstride+KRFout=(RFin−1)×stride+K参数量对比:3层3×3卷积(3×(32C2)=27C23×(3^2C^2)=27C^23×(32C2)=27C2)
- Pytorch学习 day06(torchvision中的datasets、dataloader)
丿罗小黑
Pytorchpytorch学习人工智能
torchvision的datasets使用torchvision提供的数据集API,比较方便,如果在pycharm中下载很慢,可以URL链接到迅雷中进行下载(有些URL链接在源码里)用来告诉程序,数据集存储的位置,共有多少样本等代码如下:importtorchvision#导入torchvision库#使用torchvision的datasets模块,模块中包含CIFAR10、CIFAR100、
- Pytorch学习torch.clamp ()用法浅析
Midsummer-逐梦
#torchpytorch学习人工智能
首先给出官方对此函数的定义网页:torch.clamp—PyTorch2.1documentation一、官方定义torch.clamp(input,min=None,max=None,*,out=None)→Tensor其中:input:输入张量,即需要进行元素限制的张量。min:张量中的元素的最小值。如果元素小于这个值,将被替换为这个最小值。max:张量中的元素的最大值。如果元素大于这个值,将
- PyTorch学习笔记 - 损失函数
__星辰大海__
PyTorchpytorch
文章目录1.内置损失函数2.继承nn.Module自定义损失函数3.继承autograd.Function自定义损失函数3.三种不同方式实现MSE实验PyTorch除了内置损失函数,还可以自定义损失函数。我们以均方误差为例来讲解PyTorch中损失函数的使用方法。均方误差(MeanSquaredError,MSE)是预测值x=(x1,x2,...,xn)x=(x_1,x_2,...,x_n)x=(
- 【Pytorch学习笔记】模型模块05——Module常用函数
越轨
Pytorch学习笔记pytorch学习笔记人工智能python
Module常用函数设置训练和评估模式**作用:**在PyTorch中,模型有训练(training)和评估(evaluation)两种模式,它们会影响某些层的行为。主要影响的层:Dropout层:训练时随机丢弃神经元,评估时保持全部神经元BatchNorm层:训练时计算并更新统计量,评估时使用固定统计量LayerNorm层:行为在两种模式下基本一致2.设置方法#设置训练模式model.train
- 【Pytorch学习笔记】模型模块06——hook函数
越轨
Pytorch学习笔记深度学习pytorch人工智能学习笔记python机器学习
hook函数什么是hook函数hook函数相当于插件,可以实现一些额外的功能,而又不改变主体代码。就像是把额外的功能挂在主体代码上,所有叫hook(钩子)。下面介绍Pytorch中的几种主要hook函数。torch.Tensor.register_hooktorch.Tensor.register_hook()是一个用于注册梯度钩子函数的方法。它主要用于获取和修改张量在反向传播过程中的梯度。语法格
- PyTorch学习之:torch.gather是什么?
杰瑞学AI
AI/AGINLP/LLMsComputerknowledgepytorch学习人工智能python
torch.gather的定义:torch.gather是PyTorch中的一个张量操作函数,其作用是根据指定的维度(dim)和索引张量(index),从输入张量(input)中收集元素,生成一个与索引张量形状相同的输出张量。总体来说,就是维度dim和索引张量index决定一个收集数的规则,然后,基于这个规则从输入张量中获取需要的元素。核心部分:1.输入张量(input):任意形状的张量。2.索引
- 小土堆pytorch学习笔记 之神经网络基本骨架
李小鱼爱喝水
pytorchpytorch学习笔记
pytorch之神经网络基本骨架[!TIP]首先来补补一些图像处理的基础知识吧!(尊嘟是0基础了)关于图片格式高度(Height):图像的垂直尺寸,即图像从上到下的像素数量。宽度(Width):图像的水平尺寸,即图像从左到右的像素数量。通道(Channels):图像的颜色信息,最常见的是RGB(红、绿、蓝)三通道。每个通道代表图像在特定颜色维度上的强度。批量处理:深度学习模型通常一次处理多个图像,
- 【Pytorch学习笔记】数据模块05——编写自己的Dataset
越轨
Pytorch学习笔记pytorch学习笔记人工智能
编写自己的Dataset通过前面的知识,大家基本了解如何整个数据模块是如何构建的,下面举个完整的例子,要编写自定义的Dataset类,需要遵循以下基本步骤:1.基本结构自定义Dataset类需要继承torch.utils.data.Dataset,并实现以下三个必要方法:init:初始化函数,通常用于加载数据集和进行必要的预处理len:返回数据集的总长度getitem:根据索引返回对应的数据样本和
- 从零开始认识深度学习工具:TensorFlow vs PyTorch
赛卡
青少年AI入门深度学习tensorflowpytorchmatplotlib
从零开始认识深度学习工具:TensorFlowvsPyTorch学习前的知识准备什么是深度学习?深度学习就像教电脑从经验中学习。就像你通过反复练习学会骑自行车一样,计算机会通过大量数据自动发现规律。例如:识别照片中的动物(图像识别)把语音转成文字(语音识别)自动翻译不同语言(自然语言处理)为什么需要工具框架?想象你要搭建乐高城堡,有两种选择:自己烧制每一块积木(相当于从零开始写数学计算代码)使用现
- pytorch学习笔记(三)
shushu113
pytorch学习笔记
pytorch学习笔记(三)一、模型保存用pathlib库中的方法来保存模型参数1)保存模型参数frompathlibimportPathMODEL_PATH=Path("models")#Path更好表示路径#parents表示当前路径是否存在多级嵌套,exist_ok表示当前文件夹存在也不影响MODEL_PATH.mkdir(parents=True,exist_ok=True)MODEL_N
- 零基础学习人工智能—Python—Pytorch学习(十三)
kiba518
人工智能python学习pytorch开发语言
前言最近学习了一新概念,叫科学发现和科技发明,科学发现是高于科技发明的,而这个说法我觉得还是挺有道理的,我们总说中国的科技不如欧美,但我们实际感觉上,不论建筑,硬件还是软件,理论,我们都已经高于欧美了,那为什么还说我们不如欧美呢?科学发现是高于科技发明就很好的解释了这个问题,即,我们的在线支付,建筑行业等等,这些都是科技发明,而不是科学发现,而科学发现是引领科技发明的,而欧美在科学发现上远远领先我
- 零基础学习人工智能—Python—Pytorch学习(十一)
kiba518
人工智能python学习pytorch开发语言
前言本文主要介绍tensorboard的使用。tensorboard是一个可视化的,支持人工智能学习的一个工具。tensorboard的官方地址:https://www.tensorflow.org/tensorboard本文内容来自视频教程16课,个人感觉对于tensorboard讲的非常好。Tensorboard的使用使用代码如下:importtorchimporttorch.nnasnnim
- pytorch学习14之读写文件
wuxuand
pytorch+深度学习pytorch学习人工智能
将训练的模型保存:用在其他环境中(比如在部署中进行预测)。用于定期保存中间结果,在一个耗时较长的训练过程运行中,以确保在服务器电源被不小心断掉时,损失的计算结果不会过于严重。因此,学习如何加载和存储权重向量和整个模型。1、加载和保存张量一个张量:调用load和save函数分别读写它们。这两个函数都要求我们提供一个名称,save要求将要保存的变量作为输入。load读取已经存好的文件。importto
- 【pytorch学习笔记,利用Anaconda安装pytorch和paddle深度学习环境+pycharm安装---免额外安装CUDA和cudnn】
徳一
pytorch学习深度学习pytorch学习
学习的作者链接:link一、安装pytorch环境1.打开打开anaconda的终端后condaenvlist然后创建一个名字叫pytorch,python是3.8版本的环境condacreate-npytorchpython=3.8再次看环境condaenvlist#condaenvironments:#显示如下环境base*D:\anacondapytorchD:\anaconda\envs\
- PyTorch学习DAY2transforms各种操作
沙鳄鱼
pytorch机器学习
人民币二分类数据数据收集-->Img,Label数据划分-->trainvalidtest数据读取-->DataLoader(Sampler-->Index,Dataset-->Img,Label)数据预处理-->transformstorch.utils.data.DataLoader功能:构建可迭代的数据装载器dataset:Dataset类,决定数据从哪读取及如何读取batchsize:批大
- 零基础学习人工智能—Python—Pytorch学习(一)
kiba518
人工智能python学习pytorch开发语言
前言其实学习人工智能不难,就跟学习软件开发一样,只是会的人相对少,而一些会的人写文章,做视频又不好好讲。比如,上来就跟你说要学习张量,或者告诉你张量是向量的多维度等等模式的讲解;目的都是让别人知道他会这个技术,但又不想让你学。对于学习,多年的学习经验,和无数次的回顾学习过程,都证明了一件事,如果一篇文章,一个视频,一个课程,我没学明白,那问题一定不在我,而是上课的主动或被动的不想让我学会,所以,出
- PyTorch学习之torch.nn.functional.conv2d函数
Midsummer-逐梦
#torchpytorch学习人工智能
PyTorch学习之torch.nn.functional.conv2d函数一、简介torch.nn.functional.conv2d是PyTorch中用于进行二维卷积操作的函数。卷积操作是深度学习中卷积神经网络(CNN)的核心部分,用于提取图像特征,常见于图像分类、目标检测和语义分割等任务中。二、基本语法torch.nn.functional.conv2d(input,weight,bias=
- PyTorch学习之torch.nn.Conv2d函数
Midsummer-逐梦
#torchpytorch学习人工智能
PyTorch学习之torch.nn.Conv2d函数一、简介torch.nn.Conv2d是PyTorch中用于实现二维卷积层的类,这个类可以说是对torch.nn.functional.Conv2d的进一步封装,使其使用起来更加的傻瓜式。二、基本语法torch.nn.Conv2d(in_channels,out_channels,kernel_size,stride=1,padding=0,d
- Pytorch学习笔记(十六)Image and Video - Transfer Learning for Computer Vision Tutorial
nenchoumi3119
pytorch学习笔记pytorch学习笔记
这篇博客瞄准的是pytorch官方教程中ImageandVideo章节的TransferLearningforComputerVisionTutorial部分。官网链接:https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html完整网盘链接:https://pan.baidu.com/s/1L9PVZ-KRDGVER
- Pytorch学习笔记(十一)Learning PyTorch - What is torch.nn really
nenchoumi3119
pytorch学习笔记pytorch学习笔记
这篇博客瞄准的是pytorch官方教程中LearningPyTorch章节的Whatistorch.nnreally?部分。主要是教你如何一步一步将最原始的代码进行重构至pytorch标准的代码,如果你已经熟悉了如何使用原始代码以及pytorch标准形式构建模型,可以跳过这一篇。官网链接:https://pytorch.org/tutorials/beginner/nn_tutorial.html
- 【pytorch】图像数据预处理
子根
笔记pytorchpython深度学习
本文是记录一些在深度学习中的预处理的一些语法和函数torchvision.transforms的图像变换[PyTorch学习笔记]2.3二十二种transforms图片数据预处理方法-知乎TORCHVISION.TRANSFORMS的图像预处理_阿巫兮兮的博客-CSDN博客PyTorch09:transforms图像变换、方法操作及自定义方法-YEY的博客|YEYBlog2D、3D中心裁剪:imp
- PyTorch深度学习框架60天进阶学习计划 - 第28天:多模态模型实践(一)
凡人的AI工具箱
深度学习pytorch学习AI编程人工智能python
PyTorch深度学习框架60天进阶学习计划-第28天:多模态模型实践(一)引言:跨越感知的边界欢迎来到我们的PyTorch学习旅程第28天!今天我们将步入AI世界中最激动人心的领域之一:多模态学习。想象一下,如果你的模型既能"看"又能"读",并且能够理解图像与文字之间的联系,这将为我们打开怎样的可能性?今天我们将专注于构建图文匹配系统,学习如何使用CLIP(ContrastiveLanguage
- PyTorch 深度学习博客
Zoro|
PyTorchDeepLearning人工智能
PyTorch深度学习博客欢迎来到我的PyTorch深度学习博客!在这里,我将分享使用PyTorch学习和实践深度学习项目的点滴经验。本博客适用于初学者和有一定基础的开发者,旨在帮助大家快速搭建环境、掌握核心概念,并通过实例了解实际应用。环境配置为了确保项目的稳定性和兼容性,我选择了Python3.9环境,并在conda创建的虚拟环境中运行最新且稳定的PyTorch版本2.6.0。1.创建Pyth
- Pytorch学习之路(3)
AAAx1anyu
Pytorch学习之旅学习人工智能pytorch深度学习笔记
一.机器学习任务的整体流程1.数据预处理:数据格式统一、异常数据消除、必要数据转换,划分训练集、验证集、测试集2.选择模型3.设定损失函数、优化方法、对应的超参数4.用模型拟合训练集数据,在验证集/测试集上计算模型表现二.数据读入pytorch数据读入通过Dataset+DataLoader的方式完成,Dataset定义好数据的格式和数据变换形式,DataLoader用iterative的方式不断
- Pytorch学习之路(2)
AAAx1anyu
Pytorch学习之旅pytorch学习人工智能
(PS:请先阅读Pytorch学习之路(1)开篇注释)【因为我也是小菜鸟】Pytorch基础知识1.张量(1)简介0维张量——标量(数字)1维张量——向量2维张量——矩阵3维张量——时间序列数据股价文本数据单张彩色图片(RGB)4维张量——图像5维张量——视频张量的核心是一个数据容器(2)创建tensor1).随机初始化矩阵[torch.rand()]importtorchx=torch.rand
- Pytorch学习笔记(二)
不牌不改
【Pytorch学习】pytorch深度学习python
后续遇到一些函数等知识,还会进行及时的补充。tensor的创建使用pytorch中的列表创建tensortensor=torch.Tensor([[-1,1],[0,2<
- PyTorch学习(13):PyTorch的张量相乘(torch.matmul)
赛先生.AI
PyTorchpytorch
PyTorch学习(1):torch.meshgrid的使用-CSDN博客PyTorch学习(2):torch.device-CSDN博客PyTorch学习(9):torch.topk-CSDN博客PyTorch学习(10):torch.where-CSDN博客PyTorch学习(11):PyTorch的形状变换(view,reshape)与维度变换(transpose,permute)-CSDN
- java封装继承多态等
麦田的设计者
javaeclipsejvmcencapsulatopn
最近一段时间看了很多的视频却忘记总结了,现在只能想到什么写什么了,希望能起到一个回忆巩固的作用。
1、final关键字
译为:最终的
&
- F5与集群的区别
bijian1013
weblogic集群F5
http请求配置不是通过集群,而是F5;集群是weblogic容器的,如果是ejb接口是通过集群。
F5同集群的差别,主要还是会话复制的问题,F5一把是分发http请求用的,因为http都是无状态的服务,无需关注会话问题,类似
- LeetCode[Math] - #7 Reverse Integer
Cwind
java题解MathLeetCodeAlgorithm
原题链接:#7 Reverse Integer
要求:
按位反转输入的数字
例1: 输入 x = 123, 返回 321
例2: 输入 x = -123, 返回 -321
难度:简单
分析:
对于一般情况,首先保存输入数字的符号,然后每次取输入的末位(x%10)作为输出的高位(result = result*10 + x%10)即可。但
- BufferedOutputStream
周凡杨
首先说一下这个大批量,是指有上千万的数据量。
例子:
有一张短信历史表,其数据有上千万条数据,要进行数据备份到文本文件,就是执行如下SQL然后将结果集写入到文件中!
select t.msisd
- linux下模拟按键输入和鼠标
被触发
linux
查看/dev/input/eventX是什么类型的事件, cat /proc/bus/input/devices
设备有着自己特殊的按键键码,我需要将一些标准的按键,比如0-9,X-Z等模拟成标准按键,比如KEY_0,KEY-Z等,所以需要用到按键 模拟,具体方法就是操作/dev/input/event1文件,向它写入个input_event结构体就可以模拟按键的输入了。
linux/in
- ContentProvider初体验
肆无忌惮_
ContentProvider
ContentProvider在安卓开发中非常重要。与Activity,Service,BroadcastReceiver并称安卓组件四大天王。
在android中的作用是用来对外共享数据。因为安卓程序的数据库文件存放在data/data/packagename里面,这里面的文件默认都是私有的,别的程序无法访问。
如果QQ游戏想访问手机QQ的帐号信息一键登录,那么就需要使用内容提供者COnte
- 关于Spring MVC项目(maven)中通过fileupload上传文件
843977358
mybatisspring mvc修改头像上传文件upload
Spring MVC 中通过fileupload上传文件,其中项目使用maven管理。
1.上传文件首先需要的是导入相关支持jar包:commons-fileupload.jar,commons-io.jar
因为我是用的maven管理项目,所以要在pom文件中配置(每个人的jar包位置根据实际情况定)
<!-- 文件上传 start by zhangyd-c --&g
- 使用svnkit api,纯java操作svn,实现svn提交,更新等操作
aigo
svnkit
原文:http://blog.csdn.net/hardwin/article/details/7963318
import java.io.File;
import org.apache.log4j.Logger;
import org.tmatesoft.svn.core.SVNCommitInfo;
import org.tmateso
- 对比浏览器,casperjs,httpclient的Header信息
alleni123
爬虫crawlerheader
@Override
protected void doGet(HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException
{
String type=req.getParameter("type");
Enumeration es=re
- java.io操作 DataInputStream和DataOutputStream基本数据流
百合不是茶
java流
1,java中如果不保存整个对象,只保存类中的属性,那么我们可以使用本篇文章中的方法,如果要保存整个对象 先将类实例化 后面的文章将详细写到
2,DataInputStream 是java.io包中一个数据输入流允许应用程序以与机器无关方式从底层输入流中读取基本 Java 数据类型。应用程序可以使用数据输出流写入稍后由数据输入流读取的数据。
- 车辆保险理赔案例
bijian1013
车险
理赔案例:
一货运车,运输公司为车辆购买了机动车商业险和交强险,也买了安全生产责任险,运输一车烟花爆竹,在行驶途中发生爆炸,出现车毁、货损、司机亡、炸死一路人、炸毁一间民宅等惨剧,针对这几种情况,该如何赔付。
赔付建议和方案:
客户所买交强险在这里不起作用,因为交强险的赔付前提是:“机动车发生道路交通意外事故”;
如果是交通意外事故引发的爆炸,则优先适用交强险条款进行赔付,不足的部分由商业
- 学习Spring必学的Java基础知识(5)—注解
bijian1013
javaspring
文章来源:http://www.iteye.com/topic/1123823,整理在我的博客有两个目的:一个是原文确实很不错,通俗易懂,督促自已将博主的这一系列关于Spring文章都学完;另一个原因是为免原文被博主删除,在此记录,方便以后查找阅读。
有必要对
- 【Struts2一】Struts2 Hello World
bit1129
Hello world
Struts2 Hello World应用的基本步骤
创建Struts2的Hello World应用,包括如下几步:
1.配置web.xml
2.创建Action
3.创建struts.xml,配置Action
4.启动web server,通过浏览器访问
配置web.xml
<?xml version="1.0" encoding="
- 【Avro二】Avro RPC框架
bit1129
rpc
1. Avro RPC简介 1.1. RPC
RPC逻辑上分为二层,一是传输层,负责网络通信;二是协议层,将数据按照一定协议格式打包和解包
从序列化方式来看,Apache Thrift 和Google的Protocol Buffers和Avro应该是属于同一个级别的框架,都能跨语言,性能优秀,数据精简,但是Avro的动态模式(不用生成代码,而且性能很好)这个特点让人非常喜欢,比较适合R
- lua set get cookie
ronin47
lua cookie
lua:
local access_token = ngx.var.cookie_SGAccessToken
if access_token then
ngx.header["Set-Cookie"] = "SGAccessToken="..access_token.."; path=/;Max-Age=3000"
end
- java-打印不大于N的质数
bylijinnan
java
public class PrimeNumber {
/**
* 寻找不大于N的质数
*/
public static void main(String[] args) {
int n=100;
PrimeNumber pn=new PrimeNumber();
pn.printPrimeNumber(n);
System.out.print
- Spring源码学习-PropertyPlaceholderHelper
bylijinnan
javaspring
今天在看Spring 3.0.0.RELEASE的源码,发现PropertyPlaceholderHelper的一个bug
当时觉得奇怪,上网一搜,果然是个bug,不过早就有人发现了,且已经修复:
详见:
http://forum.spring.io/forum/spring-projects/container/88107-propertyplaceholderhelper-bug
- [逻辑与拓扑]布尔逻辑与拓扑结构的结合会产生什么?
comsci
拓扑
如果我们已经在一个工作流的节点中嵌入了可以进行逻辑推理的代码,那么成百上千个这样的节点如果组成一个拓扑网络,而这个网络是可以自动遍历的,非线性的拓扑计算模型和节点内部的布尔逻辑处理的结合,会产生什么样的结果呢?
是否可以形成一种新的模糊语言识别和处理模型呢? 大家有兴趣可以试试,用软件搞这些有个好处,就是花钱比较少,就算不成
- ITEYE 都换百度推广了
cuisuqiang
GoogleAdSense百度推广广告外快
以前ITEYE的广告都是谷歌的Google AdSense,现在都换成百度推广了。
为什么个人博客设置里面还是Google AdSense呢?
都知道Google AdSense不好申请,这在ITEYE上也不是讨论了一两天了,强烈建议ITEYE换掉Google AdSense。至少,用一个好申请的吧。
什么时候能从ITEYE上来点外快,哪怕少点
- 新浪微博技术架构分析
dalan_123
新浪微博架构
新浪微博在短短一年时间内从零发展到五千万用户,我们的基层架构也发展了几个版本。第一版就是是非常快的,我们可以非常快的实现我们的模块。我们看一下技术特点,微博这个产品从架构上来分析,它需要解决的是发表和订阅的问题。我们第一版采用的是推的消息模式,假如说我们一个明星用户他有10万个粉丝,那就是说用户发表一条微博的时候,我们把这个微博消息攒成10万份,这样就是很简单了,第一版的架构实际上就是这两行字。第
- 玩转ARP攻击
dcj3sjt126com
r
我写这片文章只是想让你明白深刻理解某一协议的好处。高手免看。如果有人利用这片文章所做的一切事情,盖不负责。 网上关于ARP的资料已经很多了,就不用我都说了。 用某一位高手的话来说,“我们能做的事情很多,唯一受限制的是我们的创造力和想象力”。 ARP也是如此。 以下讨论的机子有 一个要攻击的机子:10.5.4.178 硬件地址:52:54:4C:98
- PHP编码规范
dcj3sjt126com
编码规范
一、文件格式
1. 对于只含有 php 代码的文件,我们将在文件结尾处忽略掉 "?>" 。这是为了防止多余的空格或者其它字符影响到代码。例如:<?php$foo = 'foo';2. 缩进应该能够反映出代码的逻辑结果,尽量使用四个空格,禁止使用制表符TAB,因为这样能够保证有跨客户端编程器软件的灵活性。例
- linux 脱机管理(nohup)
eksliang
linux nohupnohup
脱机管理 nohup
转载请出自出处:http://eksliang.iteye.com/blog/2166699
nohup可以让你在脱机或者注销系统后,还能够让工作继续进行。他的语法如下
nohup [命令与参数] --在终端机前台工作
nohup [命令与参数] & --在终端机后台工作
但是这个命令需要注意的是,nohup并不支持bash的内置命令,所
- BusinessObjects Enterprise Java SDK
greemranqq
javaBOSAPCrystal Reports
最近项目用到oracle_ADF 从SAP/BO 上调用 水晶报表,资料比较少,我做一个简单的分享,给和我一样的新手 提供更多的便利。
首先,我是尝试用JAVA JSP 去访问的。
官方API:http://devlibrary.businessobjects.com/BusinessObjectsxi/en/en/BOE_SDK/boesdk_ja
- 系统负载剧变下的管控策略
iamzhongyong
高并发
假如目前的系统有100台机器,能够支撑每天1亿的点击量(这个就简单比喻一下),然后系统流量剧变了要,我如何应对,系统有那些策略可以处理,这里总结了一下之前的一些做法。
1、水平扩展
这个最容易理解,加机器,这样的话对于系统刚刚开始的伸缩性设计要求比较高,能够非常灵活的添加机器,来应对流量的变化。
2、系统分组
假如系统服务的业务不同,有优先级高的,有优先级低的,那就让不同的业务调用提前分组
- BitTorrent DHT 协议中文翻译
justjavac
bit
前言
做了一个磁力链接和BT种子的搜索引擎 {Magnet & Torrent},因此把 DHT 协议重新看了一遍。
BEP: 5Title: DHT ProtocolVersion: 3dec52cb3ae103ce22358e3894b31cad47a6f22bLast-Modified: Tue Apr 2 16:51:45 2013 -070
- Ubuntu下Java环境的搭建
macroli
java工作ubuntu
配置命令:
$sudo apt-get install ubuntu-restricted-extras
再运行如下命令:
$sudo apt-get install sun-java6-jdk
待安装完毕后选择默认Java.
$sudo update- alternatives --config java
安装过程提示选择,输入“2”即可,然后按回车键确定。
- js字符串转日期(兼容IE所有版本)
qiaolevip
TODateStringIE
/**
* 字符串转时间(yyyy-MM-dd HH:mm:ss)
* result (分钟)
*/
stringToDate : function(fDate){
var fullDate = fDate.split(" ")[0].split("-");
var fullTime = fDate.split("
- 【数据挖掘学习】关联规则算法Apriori的学习与SQL简单实现购物篮分析
superlxw1234
sql数据挖掘关联规则
关联规则挖掘用于寻找给定数据集中项之间的有趣的关联或相关关系。
关联规则揭示了数据项间的未知的依赖关系,根据所挖掘的关联关系,可以从一个数据对象的信息来推断另一个数据对象的信息。
例如购物篮分析。牛奶 ⇒ 面包 [支持度:3%,置信度:40%] 支持度3%:意味3%顾客同时购买牛奶和面包。 置信度40%:意味购买牛奶的顾客40%也购买面包。 规则的支持度和置信度是两个规则兴
- Spring 5.0 的系统需求,期待你的反馈
wiselyman
spring
Spring 5.0将在2016年发布。Spring5.0将支持JDK 9。
Spring 5.0的特性计划还在工作中,请保持关注,所以作者希望从使用者得到关于Spring 5.0系统需求方面的反馈。