- AI 生成虚拟宠物:24 小时陪你聊天解闷
大力出奇迹985
人工智能宠物
本文围绕AI生成虚拟宠物展开,介绍这类依托人工智能技术诞生的虚拟伙伴,能实现24小时不间断陪伴聊天,为人们解闷。文中详细阐述其技术基础,包括自然语言处理、机器学习等;分析多样功能,如个性化互动、情绪回应等;探讨在独居人群、压力大者等不同群体中的应用场景,最后总结其为人们生活带来的积极影响及未来发展潜力,展现AI虚拟宠物在陪伴领域的独特价值。一、AI生成虚拟宠物的诞生背景与技术基石在快节奏的现代社会
- 基于Python的AI健康助手:开发与部署全攻略
AI算力网络与通信
AI算力网络与通信原理AI人工智能大数据架构python人工智能开发语言ai
基于Python的AI健康助手:开发与部署全攻略关键词:Python、AI健康助手、机器学习、自然语言处理、Flask、部署、健康管理摘要:本文将详细介绍如何使用Python开发一个AI健康助手,从需求分析、技术选型到核心功能实现,再到最终部署上线的完整过程。我们将使用自然语言处理技术理解用户健康咨询,通过机器学习模型提供个性化建议,并展示如何用Flask框架构建Web应用接口。文章包含大量实际代
- PyTorch 使用指南
PyTorch是一个功能强大且灵活的Python开源机器学习库,以其动态计算图和直观的Pythonic接口而闻名。本指南将带您了解PyTorch的基础操作,包括张量创建、自动求导,以及如何构建、训练和优化神经网络模型。我们还将深入探讨其在图像分类(以CIFAR-10为例)和自然语言处理(以灾难推文分类为例)等特定领域的应用,并概述其在图像分割和强化学习等其他领域的应用。PyTorch使用指南1.P
- 30 秒生成旅行计划!AI 代理帮你规划完美行程
在快节奏的现代生活中,高效规划旅行成为大众需求,AI代理凭借技术优势,实现30秒生成旅行计划。本文从技术原理、场景适配、优势亮点、潜在问题及未来趋势五个方面,解析AI代理规划行程的运作机制、适用场景、核心优势,探讨面临的挑战与发展方向,为读者呈现这一便捷工具的全貌,助其了解如何借助AI让旅行规划更轻松。正文一、技术原理:AI代理高效规划的核心支撑AI代理能快速生成旅行计划,背后是自然语言处理技术的
- 使用中转API在Python中调用大型语言模型 (LLM) 的实践**
qq_37836323
python语言模型开发语言
**在人工智能技术中,大型语言模型(LLM)已成为自然语言处理(NLP)和生成任务的重要工具。然而,由于网络限制,直接访问OpenAI的API在中国可能面临挑战。因此,本文将介绍如何使用中转API地址http://api.wlai.vip来调用LLM,并提供相关的demo代码。什么是大型语言模型(LLM)?大型语言模型是一种深度学习模型,训练于大量文本数据上,能够生成、总结、翻译和回答问题等。Op
- 使用中转API调用OpenAI大模型的指南
引言近年来,人工智能(AI)技术的飞速发展使得各种大模型(如GPT-4)在自然语言处理领域表现出色。然而,中国用户访问OpenAI的API时经常会遇到网络限制问题。本文将介绍如何通过中转API地址(http://api.wlai.vip)调用OpenAI的大模型,并提供示例代码以供参考。使用中转API调用OpenAI大模型步骤一:安装所需的Python库首先,确保你已安装了openai库。可以通过
- 《揭秘AI应用架构师在智能虚拟人设计系统中的创新思维》
SuperAGI架构师的AI实验室
人工智能ai
揭秘AI应用架构师在智能虚拟人设计系统中的创新思维关键词:AI应用架构师、智能虚拟人、系统设计、创新思维、自然语言处理、计算机视觉、实时交互摘要:智能虚拟人已从科幻走进现实,无论是直播间的虚拟主播、手机里的智能助手,还是元宇宙中的数字分身,它们背后都离不开AI应用架构师的“隐形设计”。本文将以“总设计师视角”,用生活化的比喻和实例,拆解AI应用架构师在智能虚拟人系统设计中的创新思维——从“让虚拟人
- AIGC 领域 AI 写作在电商文案中的应用技巧
SuperAGI架构师的AI实验室
AI大模型应用开发宝典AIGC人工智能easyuiai
AIGC领域AI写作在电商文案中的应用技巧关键词:AIGC、AI写作、电商文案、内容生成、自然语言处理、营销自动化、个性化推荐摘要:本文深入探讨了AIGC(人工智能生成内容)技术在电商文案创作中的应用技巧。文章首先介绍了AIGC的基本概念和发展现状,然后详细分析了AI写作在电商领域的核心应用场景和技术原理。通过具体的算法解析、数学模型和实际案例,展示了如何利用AI技术提升电商文案的创作效率和质量。
- Rouge:面向摘要自动评估的召回导向型指标——原理、演进与应用全景
大千AI助手
深度学习人工智能神经网络Rouge文本摘要Summary评估
“以n-gram重叠量化文本生成质量,为摘要评估提供可计算标尺”Rouge(Recall-OrientedUnderstudyforGistingEvaluation)是由南加州大学信息科学研究所(ISI)的Chin-YewLin于2004年提出的自动文本摘要评估指标,其核心思想是通过计算生成文本与参考摘要之间的n-gram重叠率,量化摘要的内容覆盖度与忠实度。作为自然语言处理(NLP)领域最权威
- Python金融分析:情感分析在量化价值投资中的完整实现
AI量化价值投资入门到精通
python金融开发语言ai
Python金融分析:情感分析在量化价值投资中的完整实现关键词:Python金融分析、情感分析、量化投资、价值投资、自然语言处理、机器学习、金融文本挖掘摘要:本文系统解析如何将情感分析技术深度整合到量化价值投资体系中,通过Python实现从金融文本数据采集、预处理、情感建模到策略回测的完整流程。详细阐述基于规则引擎、机器学习和深度学习的多维度情感分析方法,结合财务指标构建复合投资模型,并通过实战案
- Rufus算法驱动转化革命:亚马逊卖家的低成本流量破局之道
在亚马逊精细化运营的下半场,流量竞争从“烧钱买量”转向“技术借势”,随着平台内部AI算法Rufus的深度应用,其衍生的“超级转化标签”正成为卖家提升转化率的秘密武器,这项由AI驱动的功能不仅重构了消费者决策路径,更以“零广告成本”的优势,为卖家开辟了一条弯道超车的新赛道。Rufus算法解码:AI如何重塑消费决策路径(一)超级转化标签的技术内核Rufus算法的核心是“评论智能提炼”,通过自然语言处理
- 打造专属知识库:手把手教你构建RAG系统
RAG通常指的是"Retrieval-AugmentedGeneration",即“检索增强的生成”。这是一种结合了检索(Retrieval)和生成(Generation)的机器学习模型,通常用于自然语言处理任务,如文本生成、问答系统等。我们通过一下几个步骤来完成一个基于京东云官网文档的RAG系统数据收集建立知识库向量检索提示词与模型数据收集数据的收集再整个RAG实施过程中无疑是最耗人工的,涉及到
- 大模型微调:从零到实践,掌握AI大模型的核心技能
之之为知知
12大模型人工智能机器学习特征工程pytorch深度学习大模型微调
大模型微调:从零到实践,掌握AI大模型的核心技能引言大规模语言模型(如DeepSeek、通义千问)的出现,彻底改变了自然语言处理的格局。这些模型不仅在学术界取得了突破性进展,在工业界也得到了广泛应用。对于许多初学者来说,直接训练一个完整的大型语言模型可能显得遥不可及。幸运的是,微调(Fine-tuning)技术为我们提供了一条捷径,让我们可以基于已有的预训练模型,针对特定任务进行调整,从而快速实现
- 百度文心大模型ERNIE全面解析
KENYCHEN奉孝
python实践大全AIERNIE人工智能后端文心大模型python
百度文心大模型ERNIE概述百度推出的文心大模型(ERNIE,EnhancedRepresentationthroughkNowledgeIntEgration)系列是结合知识增强技术的预训练大模型,涵盖自然语言处理(NLP)、跨模态、行业应用等多个方向。其开源版本为开发者提供了可商用的大模型能力支持。ERNIE的核心技术特点知识增强:通过多源知识图谱(如百度百科、专业领域数据)注入,提升模型对实
- AI办公(综合)课程内容框架
建模中…
AI-native
AI办公(综合)课程内容框架:深度挖掘与分析一、课程定位深化:从“技能学习”到“价值创造体系构建”传统办公课程聚焦单点工具,本课程定位突破技能培训边界,构建“技术-场景-价值”闭环:-技术穿透性:不局限于AI工具表层操作,深入讲解自然语言处理(NLP)、生成式对抗网络(GANs)等技术在办公场景的底层逻辑,让学员理解“AI为何能优化流程”,而非仅知“如何用工具”。-场景延展性:覆盖内容运营、协作管
- 人工智能自然语言处理:Transformer 模型详解
大力出奇迹985
人工智能自然语言处理transformer
一、Transformer模型的诞生背景在自然语言处理的漫长征程中,早期的传统模型,如循环神经网络(RNN)及其变体长短时记忆网络(LSTM),曾占据主导地位。RNN试图通过依次处理序列中的每个元素,来捕捉上下文信息。但它存在一个致命弱点,在处理长序列时,会面临梯度消失或梯度爆炸的问题,就像一个长途跋涉的旅人,随着路程的增加,逐渐忘记了出发时的目标和重要信息。LSTM虽然在一定程度上缓解了这个问题
- 跨境电商 ai架构设计
Java程序员 拥抱ai
ai人工智能
一、核心理论基础AI生成知识库的本质是**“数据驱动的知识结构化与智能化生产”**,核心依赖三大理论支撑:知识工程理论将跨境电商业务中分散的“非结构化信息”(如产品参数、用户评价、物流规则、合规条款)转化为“结构化知识”(如实体关系、规则库、决策树),通过AI实现知识的自动提取、关联与更新。例:家具用品的“材质-环保标准-目标市场合规要求”(如欧盟E1级板材认证)可形成关联知识链。自然语言处理(N
- 字节跳动Coze平台:零代码打造AI智能体
小小怪 @
人工智能
Coze,这是一个由字节跳动推出的AIBot开发平台。它允许用户快速构建、部署和管理自定义的AI聊天机器人(智能体),支持多种功能,如自然语言处理、知识库集成和任务自动化。1.什么是智能体Coze?定义:Coze是一个低代码/无代码的AI开发平台,专注于创建“智能体”(即AIagent)。这些智能体可以模拟人类对话、执行任务(如信息查询或自动化流程),并通过API或插件集成到各种应用中。核心优势:
- 深度剖析AI人工智能情感分析的算法原理
AI算力网络与通信
AI算力网络与通信原理AI人工智能大数据架构人工智能算法easyuiai
深度剖析AI人工智能情感分析的算法原理关键词:情感分析、自然语言处理、机器学习、深度学习、文本分类、情感词典、BERT摘要:本文将深入浅出地讲解AI情感分析的技术原理,从基础概念到核心算法,再到实际应用。我们将探索计算机如何理解人类情感,分析文本背后的情绪色彩,并介绍当前最先进的情感分析技术。通过生活化的比喻和代码实例,帮助读者全面理解这一AI领域的重要应用。背景介绍目的和范围情感分析(Senti
- 数据分析领域如何借助AI人工智能升级
AI天才研究院
ChatGPT计算AI大模型应用入门实战与进阶数据分析人工智能数据挖掘ai
数据分析领域如何借助AI人工智能升级关键词:数据分析、人工智能、机器学习、自动化分析、智能决策、数据预处理、预测分析摘要:本文系统阐述数据分析领域如何通过人工智能实现技术升级。从传统数据分析的瓶颈出发,解析AI驱动的核心技术架构,包括自动化数据预处理、智能特征工程、预测分析模型、自然语言处理在数据分析中的应用。通过具体算法实现、数学模型推导和项目实战案例,展示AI如何提升数据分析效率、挖掘数据深度
- 进阶向:基于Python的电脑硬件监控工具(GUI + 系统信息采集)
超级小识
Python进阶有趣的项目pythonphp开发语言
引言在科技飞速发展的今天,人工智能已经渗透到我们生活的方方面面,从基础的日常沟通到复杂的商业决策,智能技术的影响力正在以惊人的速度扩大。以自然语言处理为例,智能助手不仅能理解人类的日常对话,还能通过情感分析提供个性化的回应;在医疗领域,AI辅助诊断系统的准确率已达到专业医师水平,极大地提高了早期疾病筛查的效率。面对这场深刻的技术变革,理解其背后的逻辑与应用场景变得至关重要。从技术角度看,机器学习算
- 自然语言处理技术应用领域深度解析:从理论到实践的全面探索
1.引言:自然语言处理的技术革命与应用前景自然语言处理(NaturalLanguageProcessing,NLP)作为人工智能领域的核心分支,正在以前所未有的速度改变着我们的数字化生活。从最初的规则基础系统到如今基于深度学习的大语言模型,NLP技术经历了从理论探索到实际应用的深刻变革。在当今信息爆炸的时代,人类每天产生的文本数据量达到了惊人的规模,如何让计算机理解、处理和生成人类语言,已经成为推
- 大语言模型原理与工程实践:RLHF 实战框架
AI天才研究院
AI大模型企业级应用开发实战AI大模型应用入门实战与进阶AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理与工程实践:RLHF实战框架1.背景介绍1.1人工智能的崛起人工智能(AI)技术在过去几年中取得了令人瞩目的进展,尤其是在自然语言处理(NLP)和计算机视觉(CV)等领域。大型语言模型(LLM)的出现,使得人工智能系统能够生成逼真的自然语言输出,从而在多个应用场景中发挥重要作用。1.2大语言模型的挑战然而,训练出高质量的大语言模型并非易事。传统的监督学习方法需要大量高质量的标注数据,
- 浅谈生成式AI语言模型的现状与展望
摘要生成式人工智能语言模型作为当前人工智能领域最具突破性的技术之一,正在深刻改变着自然语言处理的技术范式和应用格局。本文从学术文献综述的角度,系统梳理了从Transformer架构到大语言模型的技术演进历程,深入分析了当前生成式AI语言模型的核心技术特征、应用现状以及面临的主要挑战,并展望了未来发展趋势。研究表明,生成式AI语言模型在参数规模扩展、多模态融合、推理能力提升等方面取得了显著进展,但仍
- 主要分布在背侧海马体(dHPC)CA1区域(dCA1)的时空联合细胞对NLP中的深层语义分析的积极影响和启示
金井PRATHAMA
脑神经科学与NLP自然语言处理人工智能神经网络
时空联合细胞(SpatiotemporalConjunctiveCells)主要分布在背侧海马体CA1区(dCA1),其核心功能是同步编码空间位置、时间信息和行为意图,形成动态的情景记忆表征。这种神经机制为自然语言处理(NLP)中的深层语义分析提供了突破性的启示,尤其在解决语义连贯性、上下文建模和长期依赖等核心挑战上。以下是具体影响和技术实现路径:一、时空联合细胞的核心机制及其NLP关联背侧海马体
- Transformer:颠覆NLP的自注意力革命
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpythontransformer自然语言处理深度学习
Transformer:颠覆NLP的自注意力革命Transformer是自然语言处理领域中极具影响力的深度学习模型架构,以下是对其的详细介绍:提出背景与应用:2017年,Vaswani等人在《AttentionIsAllYouNeed》论文中首次提出Transformer架构,它主要用于处理序列到序列的任务,如机器翻译、文本生成等。核心原理:文本生成的Transformer模型原理是“预测下一个词
- Swin Transformer原理与代码精讲
bai666ai
深度学习之计算机视觉transformerswinCV深度学习图像分类
课程链接:SwinTransformer原理与代码精讲--计算机视觉视频教程-人工智能-CSDN程序员研修院Transformer在许多NLP(自然语言处理)任务中取得了最先进的成果。SwinTransformer是在ViT基础上发展而来,是Transformer应用于CV(计算机视觉)领域又一里程碑式的工作。它可以作为通用的骨干网络,用于图片分类的CV任务,以及下游的CV任务,如目标检测、实例分
- Transformer Masked loss原理精讲及其PyTorch逐行实现
MaskedLoss的核心原理是:在计算损失函数时,只考虑真实有意义的词元(token),而忽略掉为了数据对齐而填充的无意义的填充词元(paddingtoken)。这是重要的技术,可以确保模型专注于学习有意义的任务,并得到一个正确的性能评估。1.原理精讲为什么需要MaskedLoss?在训练神经网络时,我们通常会用一个批次(batch)的数据进行训练,而不是一次只用一个样本。对于自然语言处理任务,
- 深入探讨 Transformer 模型架构
年纪轻轻头已凉
transformer深度学习人工智能
```html深入探讨Transformer模型架构深入探讨Transformer模型架构Transformer是一种革命性的神经网络架构,由Vaswani等人在2017年提出,并在自然语言处理(NLP)领域取得了显著的成功。与传统的循环神经网络(RNN)和卷积神经网络(CNN)不同,Transformer完全依赖于自注意力机制(Self-AttentionMechanism),这使得它在处理长序
- 星图云开发者平台新功能速递|AI大模型赋能开发应用效率提升三倍!
星图易码
人工智能
还在为技术文档检索耗费数小时?还在重复编写基础CRUD代码?星图云开发者平台发布「三大AI核心能力」,将自然语言大模型深度融入开发全流程。这不是替代开发者,而是让每位工程师拥有超级辅助——从此复杂算法封装、接口调试、业务逻辑设计效率全面跃升。一、智能化多源知识问答技术当开发者以自然语言形式提出技术问题时,多模态自然语言处理(NLP)模型与知识图谱融合技术,实现三重突破:1.跨域知识检索:联动平台专
- windows下源码安装golang
616050468
golang安装golang环境windows
系统: 64位win7, 开发环境:sublime text 2, go版本: 1.4.1
1. 安装前准备(gcc, gdb, git)
golang在64位系
- redis批量删除带空格的key
bylijinnan
redis
redis批量删除的通常做法:
redis-cli keys "blacklist*" | xargs redis-cli del
上面的命令在key的前后没有空格时是可以的,但有空格就不行了:
$redis-cli keys "blacklist*"
1) "blacklist:12:
[email protected]
- oracle正则表达式的用法
0624chenhong
oracle正则表达式
方括号表达示
方括号表达式
描述
[[:alnum:]]
字母和数字混合的字符
[[:alpha:]]
字母字符
[[:cntrl:]]
控制字符
[[:digit:]]
数字字符
[[:graph:]]
图像字符
[[:lower:]]
小写字母字符
[[:print:]]
打印字符
[[:punct:]]
标点符号字符
[[:space:]]
- 2048源码(核心算法有,缺少几个anctionbar,以后补上)
不懂事的小屁孩
2048
2048游戏基本上有四部分组成,
1:主activity,包含游戏块的16个方格,上面统计分数的模块
2:底下的gridview,监听上下左右的滑动,进行事件处理,
3:每一个卡片,里面的内容很简单,只有一个text,记录显示的数字
4:Actionbar,是游戏用重新开始,设置等功能(这个在底下可以下载的代码里面还没有实现)
写代码的流程
1:设计游戏的布局,基本是两块,上面是分
- jquery内部链式调用机理
换个号韩国红果果
JavaScriptjquery
只需要在调用该对象合适(比如下列的setStyles)的方法后让该方法返回该对象(通过this 因为一旦一个函数称为一个对象方法的话那么在这个方法内部this(结合下面的setStyles)指向这个对象)
function create(type){
var element=document.createElement(type);
//this=element;
- 你订酒店时的每一次点击 背后都是NoSQL和云计算
蓝儿唯美
NoSQL
全球最大的在线旅游公司Expedia旗下的酒店预订公司,它运营着89个网站,跨越68个国家,三年前开始实验公有云,以求让客户在预订网站上查询假期酒店时得到更快的信息获取体验。
云端本身是用于驱动网站的部分小功能的,如搜索框的自动推荐功能,还能保证处理Hotels.com服务的季节性需求高峰整体储能。
Hotels.com的首席技术官Thierry Bedos上个月在伦敦参加“2015 Clou
- java笔记1
a-john
java
1,面向对象程序设计(Object-oriented Propramming,OOP):java就是一种面向对象程序设计。
2,对象:我们将问题空间中的元素及其在解空间中的表示称为“对象”。简单来说,对象是某个类型的实例。比如狗是一个类型,哈士奇可以是狗的一个实例,也就是对象。
3,面向对象程序设计方式的特性:
3.1 万物皆为对象。
- C语言 sizeof和strlen之间的那些事 C/C++软件开发求职面试题 必备考点(一)
aijuans
C/C++求职面试必备考点
找工作在即,以后决定每天至少写一个知识点,主要是记录,逼迫自己动手、总结加深印象。当然如果能有一言半语让他人收益,后学幸运之至也。如有错误,还希望大家帮忙指出来。感激不尽。
后学保证每个写出来的结果都是自己在电脑上亲自跑过的,咱人笨,以前学的也半吊子。很多时候只能靠运行出来的结果再反过来
- 程序员写代码时就不要管需求了吗?
asia007
程序员不能一味跟需求走
编程也有2年了,刚开始不懂的什么都跟需求走,需求是怎样就用代码实现就行,也不管这个需求是否合理,是否为较好的用户体验。当然刚开始编程都会这样,但是如果有了2年以上的工作经验的程序员只知道一味写代码,而不在写的过程中思考一下这个需求是否合理,那么,我想这个程序员就只能一辈写敲敲代码了。
我的技术不是很好,但是就不代
- Activity的四种启动模式
百合不是茶
android栈模式启动Activity的标准模式启动栈顶模式启动单例模式启动
android界面的操作就是很多个activity之间的切换,启动模式决定启动的activity的生命周期 ;
启动模式xml中配置
<activity android:name=".MainActivity" android:launchMode="standard&quo
- Spring中@Autowired标签与@Resource标签的区别
bijian1013
javaspring@Resource@Autowired@Qualifier
Spring不但支持自己定义的@Autowired注解,还支持由JSR-250规范定义的几个注解,如:@Resource、 @PostConstruct及@PreDestroy。
1. @Autowired @Autowired是Spring 提供的,需导入 Package:org.springframewo
- Changes Between SOAP 1.1 and SOAP 1.2
sunjing
ChangesEnableSOAP 1.1SOAP 1.2
JAX-WS
SOAP Version 1.2 Part 0: Primer (Second Edition)
SOAP Version 1.2 Part 1: Messaging Framework (Second Edition)
SOAP Version 1.2 Part 2: Adjuncts (Second Edition)
Which style of WSDL
- 【Hadoop二】Hadoop常用命令
bit1129
hadoop
以Hadoop运行Hadoop自带的wordcount为例,
hadoop脚本位于/home/hadoop/hadoop-2.5.2/bin/hadoop,需要说明的是,这些命令的使用必须在Hadoop已经运行的情况下才能执行
Hadoop HDFS相关命令
hadoop fs -ls
列出HDFS文件系统的第一级文件和第一级
- java异常处理(初级)
白糖_
javaDAOspring虚拟机Ajax
从学习到现在从事java开发一年多了,个人觉得对java只了解皮毛,很多东西都是用到再去慢慢学习,编程真的是一项艺术,要完成一段好的代码,需要懂得很多。
最近项目经理让我负责一个组件开发,框架都由自己搭建,最让我头疼的是异常处理,我看了一些网上的源码,发现他们对异常的处理不是很重视,研究了很久都没有找到很好的解决方案。后来有幸看到一个200W美元的项目部分源码,通过他们对异常处理的解决方案,我终
- 记录整理-工作问题
braveCS
工作
1)那位同学还是CSV文件默认Excel打开看不到全部结果。以为是没写进去。同学甲说文件应该不分大小。后来log一下原来是有写进去。只是Excel有行数限制。那位同学进步好快啊。
2)今天同学说写文件的时候提示jvm的内存溢出。我马上反应说那就改一下jvm的内存大小。同学说改用分批处理了。果然想问题还是有局限性。改jvm内存大小只能暂时地解决问题,以后要是写更大的文件还是得改内存。想问题要长远啊
- org.apache.tools.zip实现文件的压缩和解压,支持中文
bylijinnan
apache
刚开始用java.util.Zip,发现不支持中文(网上有修改的方法,但比较麻烦)
后改用org.apache.tools.zip
org.apache.tools.zip的使用网上有更简单的例子
下面的程序根据实际需求,实现了压缩指定目录下指定文件的方法
import java.io.BufferedReader;
import java.io.BufferedWrit
- 读书笔记-4
chengxuyuancsdn
读书笔记
1、JSTL 核心标签库标签
2、避免SQL注入
3、字符串逆转方法
4、字符串比较compareTo
5、字符串替换replace
6、分拆字符串
1、JSTL 核心标签库标签共有13个,
学习资料:http://www.cnblogs.com/lihuiyy/archive/2012/02/24/2366806.html
功能上分为4类:
(1)表达式控制标签:out
- [物理与电子]半导体教材的一个小问题
comsci
问题
各种模拟电子和数字电子教材中都有这个词汇-空穴
书中对这个词汇的解释是; 当电子脱离共价键的束缚成为自由电子之后,共价键中就留下一个空位,这个空位叫做空穴
我现在回过头翻大学时候的教材,觉得这个
- Flashback Database --闪回数据库
daizj
oracle闪回数据库
Flashback 技术是以Undo segment中的内容为基础的, 因此受限于UNDO_RETENTON参数。要使用flashback 的特性,必须启用自动撤销管理表空间。
在Oracle 10g中, Flash back家族分为以下成员: Flashback Database, Flashback Drop,Flashback Query(分Flashback Query,Flashbac
- 简单排序:插入排序
dieslrae
插入排序
public void insertSort(int[] array){
int temp;
for(int i=1;i<array.length;i++){
temp = array[i];
for(int k=i-1;k>=0;k--)
- C语言学习六指针小示例、一维数组名含义,定义一个函数输出数组的内容
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int * p; //等价于 int *p 也等价于 int* p;
int i = 5;
char ch = 'A';
//p = 5; //error
//p = &ch; //error
//p = ch; //error
p = &i; //
- centos下php redis扩展的安装配置3种方法
dcj3sjt126com
redis
方法一
1.下载php redis扩展包 代码如下 复制代码
#wget http://redis.googlecode.com/files/redis-2.4.4.tar.gz
2 tar -zxvf 解压压缩包,cd /扩展包 (进入扩展包然后 运行phpize 一下是我环境中phpize的目录,/usr/local/php/bin/phpize (一定要
- 线程池(Executors)
shuizhaosi888
线程池
在java类库中,任务执行的主要抽象不是Thread,而是Executor,将任务的提交过程和执行过程解耦
public interface Executor {
void execute(Runnable command);
}
public class RunMain implements Executor{
@Override
pub
- openstack 快速安装笔记
haoningabc
openstack
前提是要配置好yum源
版本icehouse,操作系统redhat6.5
最简化安装,不要cinder和swift
三个节点
172 control节点keystone glance horizon
173 compute节点nova
173 network节点neutron
control
/etc/sysctl.conf
net.ipv4.ip_forward =
- 从c面向对象的实现理解c++的对象(二)
jimmee
C++面向对象虚函数
1. 类就可以看作一个struct,类的方法,可以理解为通过函数指针的方式实现的,类对象分配内存时,只分配成员变量的,函数指针并不需要分配额外的内存保存地址。
2. c++中类的构造函数,就是进行内存分配(malloc),调用构造函数
3. c++中类的析构函数,就时回收内存(free)
4. c++是基于栈和全局数据分配内存的,如果是一个方法内创建的对象,就直接在栈上分配内存了。
专门在
- 如何让那个一个div可以拖动
lingfeng520240
html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml
- 第10章 高级事件(中)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 计算两个经纬度之间的距离
roadrunners
计算纬度LBS经度距离
要解决这个问题的时候,到网上查了很多方案,最后计算出来的都与百度计算出来的有出入。下面这个公式计算出来的距离和百度计算出来的距离是一致的。
/**
*
* @param longitudeA
* 经度A点
* @param latitudeA
* 纬度A点
* @param longitudeB
*
- 最具争议的10个Java话题
tomcat_oracle
java
1、Java8已经到来。什么!? Java8 支持lambda。哇哦,RIP Scala! 随着Java8 的发布,出现很多关于新发布的Java8是否有潜力干掉Scala的争论,最终的结论是远远没有那么简单。Java8可能已经在Scala的lambda的包围中突围,但Java并非是函数式编程王位的真正觊觎者。
2、Java 9 即将到来
Oracle早在8月份就发布
- zoj 3826 Hierarchical Notation(模拟)
阿尔萨斯
rar
题目链接:zoj 3826 Hierarchical Notation
题目大意:给定一些结构体,结构体有value值和key值,Q次询问,输出每个key值对应的value值。
解题思路:思路很简单,写个类词法的递归函数,每次将key值映射成一个hash值,用map映射每个key的value起始终止位置,预处理完了查询就很简单了。 这题是最后10分钟出的,因为没有考虑value为{}的情