- Spring AI与机器学习:智能应用开发新范式
tmjpz04412
人工智能spring机器学习
SpringAI与机器学习的整合SpringAI是一个基于Spring生态的AI开发框架,旨在简化智能应用的开发流程。通过SpringAI,开发者可以快速集成机器学习模型,构建高效的智能应用。SpringAI支持多种机器学习库和框架,如TensorFlow、PyTorch和Scikit-learn,提供统一的API接口。SpringAI的核心优势在于其模块化设计和自动化配置。开发者无需关心复杂的依
- 从零开始构建深度学习环境:基于Pytorch、CUDA与cuDNN的虚拟环境搭建与实践(适合初学者)
荣华富贵8
程序员的知识储备2程序员的知识储备3深度学习pytorch人工智能
摘要:深度学习正在引领人工智能技术的革新,而对于初学者来说,正确搭建深度学习环境是迈向AI研究与应用的第一步。本文将为读者提供一套详尽的教程,指导如何在本地环境中搭建Pytorch、CUDA与cuDNN,以及如何利用Anaconda和PyCharm进行高效开发。内容涵盖从环境配置、常见错误修正,到基础的深度学习模型构建及训练。我们旨在为深度学习零基础的入门者提供一个全面且易于理解的“保姆级”教程,
- 使用 PyTorch 和 Pandas 进行 Kaggle 房价预测
Clang's Blog
AIpytorchpandas人工智能
文章目录1、环境设置2、数据下载3、数据预处理4、模型构建5、训练和验证6、训练模型并生成预测结果7、完整代码在本篇博文中,我们将探索如何使用PyTorch和Pandas库,构建一个用于Kaggle房价预测的模型。我们将详细讨论数据加载、预处理、模型构建、训练、验证及最终预测的全过程。1、环境设置我们首先需要导入所需的库,包括用于数据处理的pandas和numpy,以及用于深度学习的torch。i
- PyTorch 使用指南
PyTorch是一个功能强大且灵活的Python开源机器学习库,以其动态计算图和直观的Pythonic接口而闻名。本指南将带您了解PyTorch的基础操作,包括张量创建、自动求导,以及如何构建、训练和优化神经网络模型。我们还将深入探讨其在图像分类(以CIFAR-10为例)和自然语言处理(以灾难推文分类为例)等特定领域的应用,并概述其在图像分割和强化学习等其他领域的应用。PyTorch使用指南1.P
- PyTorch武侠演义 第一卷:初入江湖 第7章:矿洞中的计算禁制
空中湖
pytorch武侠演绎pytorch人工智能python
第一卷:初入江湖第7章:矿洞中的计算禁制矿洞深处罗盘残件在接近矿洞时突然发热,指针疯狂旋转。"就是这里,"欧阳长老抚摸着洞壁上的计算图刻痕,“TensorFlow帮用静态图封印了矿脉。”林小码看到:幽蓝矿脉构成巨大的计算图结构水晶矿簇随呼吸节奏明灭(CUDA核心)矿道中流淌着数据光流(内存带宽)"小心!"大师突然拉回林小码。他刚才踩中的矿砖下陷,触发岩壁上的机关——数十道计算图锁链从四面八方射来!
- 数字人克隆中SyncTalk算法介绍与部署过程
优秘智能UMI
人工智能ubuntu
SyncTalk算法介绍SyncTalk合成同步的头部说话视频,采用三平面哈希表示来保持主体身份。它可以生成同步的嘴唇动作、面部表情和稳定的头部姿势,并恢复头发细节以创建高分辨率视频。部署在Linux中部署该项目,在Ubuntu18.04、Pytorch1.12.1和CUDA11.3上测试。gitclonehttps://github.com/ZiqiaoPeng/SyncTalk.gitcdSy
- 风格迁移(Style Transfer)
1.什么是风格迁移(StyleTransfer):简单介绍风格迁移的概念,指的是将一张图像的内容与另一张图像的艺术风格结合起来,从而生成一个新的图像。例如,将一张风景图像的内容与一幅著名艺术作品(如梵高的《星夜》)的风格结合。应用场景:风格迁移常用于图像生成、艺术创作和增强现实等领域。目标:本文将讲解如何使用PyTorch和VGG19模型实现风格迁移,并展示其核心代码。2.风格迁移的原理在这一部分
- 标签助手:基于LabelImg和YOLOv5的图像半自动标注工具
伏容一Julia
标签助手:基于LabelImg和YOLOv5的图像半自动标注工具项目基础介绍标签助手(labelGo-Yolov5AutoLabelImg)是一个图形化的半自动图像注解工具,它结合了广受欢迎的图像标注工具LabelImg的力量与先进的目标检测框架YOLOv5。这个开源项目旨在简化数据集的标注过程,利用现有YOLOv5PyTorch模型实现快速的半自动化标注,极大地提高了标注效率。项目主要采用Pyt
- 【MMCV】MMCV安装与踩坑
Elendill
Pyhtonpytorchpythonmmcv
确认MMCV版本首先确认项目所需MMCV的版本是多少mmcv2.0版本的代码相比较于=2.0.0安装方法新创建一个conda环境安装pytorch:condainstallpytorchtorchvisiontorchaudiopytorch-cuda=11.8-cpytorch-cnvidia安装mim,这是openmm官方推出的用于安装他们旗下mm系列产品的安装器:pipinstall-Uop
- 基于Jetson Nano与PyTorch的无人机实时目标跟踪系统搭建指南
引言:边缘计算赋能智能监控在AIoT时代,将深度学习模型部署到嵌入式设备已成为行业刚需。本文将手把手指导读者在NVIDIAJetsonNano(4GB版本)开发板上,构建基于YOLOv5+SORT算法的实时目标跟踪系统,集成无人机控制与地面站监控界面,最终打造低功耗智能监控设备。通过本项目,读者将掌握:嵌入式端模型优化与部署技巧;多目标跟踪算法工程化实现;无人机-地面站协同控制架构;边缘计算场景下
- 【语义分割专栏】4:deeplab系列实战篇(附上完整可运行的代码pytorch)
fouen
语义分割pytorch人工智能python计算机视觉深度学习
文章目录前言Deeplab系列全流程代码模型搭建(model)backbone的搭建Deeplabv1Deeplabv2Deeplabv3Deeplabv3+数据处理(dataloader)评价指标(metric)训练流程(train)模型测试(test)效果图结语前言Deeplab系列原理篇讲解:【语义分割专栏】4:deeplab系列原理篇_deeplab系列详解-CSDN博客代码地址,下载可复
- pytorch学习笔记-自定义卷积
墨染枫
深度学习pytorch学习笔记
未完结的草稿———!大概是准备整合一下常见的层,整合完感觉就可以进行搭建了(还没进行到这一步所以不太确定版)(ps我将在完结这一篇的时候删除上面的小字and二编一下整篇文章的结构,如果看到了这部分文字也是很有缘分了/doge这一部分感觉也没啥好说的==也就是reshape部分值得注意一下?剩下的感觉就是了解一下用法就可以importtorchimporttorch.nnasnnimporttorc
- PyTorch武侠演义 第一卷:初入江湖 第5章:玉如意的秘密
第一卷:初入江湖第5章:玉如意的秘密百年秘辛藏经阁最深处,大师掀开尘封的《门派大事记》,指向一幅泛黄的画卷:“看,这就是百年前的优化器长老——欧阳调参。”画中人手持玉如意,面前悬浮着九个水晶球。林小码凑近细看,发现如意上刻着「lr=0.001」。“当年TensorFlow帮为何要盗损失玉佩?”大师叹息:“因为这块玉佩,正是控制玉如意能量的钥匙…”突然,书架后传来机关转动的咔嗒声。一道暗门缓缓打开,
- 使用PyTorch实现目标检测与跟踪
认真写代码i
pytorch目标检测人工智能Python
目标检测与跟踪是计算机视觉领域中的重要任务,它可以帮助我们在图像或视频中准确地定位和跟踪特定物体。PyTorch是一个流行的深度学习框架,提供了强大的工具和库,可以用于目标检测与跟踪的实现。本文将详细介绍如何使用PyTorch实现目标检测与跟踪,并提供相应的源代码。安装PyTorch和相关依赖首先,我们需要安装PyTorch和其他必要的依赖项。你可以通过以下命令使用pip安装PyTorch:pip
- Pytorch 自定义损失函数
DeniuHe
Pytorch
自定义HingeLossclassMyHingeLoss(torch.nn.Module):#不要忘记继承Moduledef__init__(self):super(MyHingeLoss,self).__init__()defforward(self,output,target):"""output和target都是1-D张量,换句话说,每个样例的返回是一个标量."""hinge_loss=1-
- Pytorch实现目标检测
importosimportrandomimportpandasaspdimportnumpyasnpimportcv2fromsklearn.model_selectionimporttrain_test_splitimporttorchfromtorch.utils.dataimportDataset,DataLoaderimporttorch.nnasnnimporttorch.nn.fun
- 解决TensorBoard报错“log_dir is not a directory“的完整指南
SEVEN是7
tensorflowpython深度学习
在使用PyTorch的TensorBoard进行训练可视化时,许多开发者会遇到FailedPreconditionError:./文件名isnotadirectory的错误。本文将深入分析这个问题的根源,并提供完整的解决方案,特别是针对中文路径这一常见但容易被忽视的问题。问题一(目录确实存在的情况下):路径中包含中文解决:更改文件名为正确的命名格式(注意:连模型的文件名也不要用中文,确保绝对路径全
- Pytorch混合精度训练最佳实践
贝塔西塔
工程经验pytorch人工智能深度学习混合精度模型加速
混合精度训练(MixedPrecisionTraining)是一种通过结合单精度(FP32)和半精度(FP16/FP8)计算来加速训练、减少显存占用的技术。它在保持模型精度的同时,通常能带来2-3倍的训练速度提升,并减少约50%的显存使用,是平衡训练效率与数值稳定性的核心技术,尤其在大模型训练中不可或缺。以下从GradScaler底层逻辑、避坑技巧(含NaN解决方案)、PyTorchLightni
- Pytorch自定义优化器最佳实践
在PyTorch中,自定义优化器需要遵循特定的规范以兼容PyTorch的训练流程。下面从核心方法、closure的作用,到Ranger优化器的实现,逐步展开说明。一、PyTorch自定义优化器的必要方法自定义优化器必须继承torch.optim.Optimizer,并实现以下核心方法:init(self,params,defaults)作用:初始化优化器,定义超参数(如学习率、动量等),并为参数组
- PytorchLightning最佳实践基础篇
贝塔西塔
工程经验pytorchLightning深度学习编程框架
PyTorchLightning(简称PL)是一个建立在PyTorch之上的高层框架,核心目标是剥离工程代码与研究逻辑,让研究者专注于模型设计和实验思路,而非训练循环、分布式配置、日志管理等重复性工程工作。本文从基础到进阶,全面介绍其功能、核心组件、封装逻辑及最佳实践。一、PyTorchLightning核心价值原生PyTorch训练代码中,大量精力被消耗在:手动编写训练/验证循环(epoch、b
- Linux指令&&ros学习&&python深度学习&&bug学习笔记
起个别名
LinuxROSPython
##这个文件是关于ros、linux指令,pytorch、python、onnx和相关problem的一些笔记###ROS&&linux**find:在当前路径或指定的路径下递归地搜索文件或目录,并可以根据不同的条件进行过滤和匹配。**```find-name*.pyfind/home/dai/bev_lane_det-main-namemodelsfind/home/dai/bev_lane_d
- 零基础完整版入门经典深度学习时间序列预测项目实战+最新前沿时间序列预测模型代码讲解学习整理(附完整可运行代码)
OverOnEarth
时间序列预测项目实战深度学习学习人工智能
专栏内容本专栏主要整理了作者在时间序列预测领域内的一些学习思路与代码整理,帮助大家在初进入此领域时,可以快速掌握代码进行实战操作,对代码的操作再结合论文阅读肯定是上升更快嘛,作者也愿意和大家一起讨论进步,下面的内容会逐步更新,作者主页的资源列也会放出一些可下载的资源供大家参考学习噢。一、LSTM时间序列预测完整代码示例学习分析(pytorch框架)精选试读文章二、LSTM多变量输入实现多步预测完整
- 第十四章:AI的数据“集装箱”:彻底搞懂Tensor的Batch与维度
爱分享的飘哥
AI新纪元:120日觉醒计划TensorPyTorchBatchSize数据处理AI基础深度学习教程
AI数据集中箱前言:为什么AI从不“零售”,总是“批发”?1:Batch(批次)——GPU的“灵魂伴侣”1.1单个处理vs.批量处理:CPU与GPU的思维差异1.2DataLoader:PyTorch的“自动化装箱员”2:维度的语言——破译[B,L,D]的含义2.1[L,D]:一个句子的“二维画像”2.2[B,L,D]:一批句子的“三维魔方”2.3用代码直观感受维度的增加3:追踪Tensor的“变
- PyTorch中实现早停机制(EarlyStopping)附代码
自信的小螺丝钉
AI知识pytorchpython人工智能AI深度学习
1.核心目的当模型在验证集上的性能不再提升时,提前终止训练防止过拟合,节省计算资源2.实现方法监控验证集指标(如损失、准确率),设置耐心值(Patience)3.代码:classEarlyStopping:def__init__(self,patience=10,delta=0):"""EarlystoppingArgs:patience:int,numberofepochstowaitbefor
- 【已解决】YOLO11模型转wts时报错:PytorchStreamReader failed reading zip archive
lxmyzzs
bug人工智能python计算机视觉目标检测神经网络深度学习
问题:在把训练好的新YOLO11s模型转wts文件时报错,具体信息如下图(PytorchStreamReaderfailedreadingziparchive:failedfindingcentraldirectory)解决:新老版本pytorch之间的兼容问题,改动一下生成wts文件即可。代码帖在下面。importsys#noqa:F401importargparseimportosimport
- Pytorch实现细节解析:Transformer模型的Encoder与Decoder逐行代码讲解
lazycatlove
pytorchtransformer人工智能
文章目录摘要一、Transformer1.1为什么要使用attention1.2Transformer的优点二、Transformer模型Encoder和Decoder原理讲解与其Pytorch逐行实现2.1wordembedding2.2单词索引构成源句子和目标句子2.3构建positionembedding2.4构造encoder的self-attentionmask2.5构造intra-at
- Transformer Masked loss原理精讲及其PyTorch逐行实现
MaskedLoss的核心原理是:在计算损失函数时,只考虑真实有意义的词元(token),而忽略掉为了数据对齐而填充的无意义的填充词元(paddingtoken)。这是重要的技术,可以确保模型专注于学习有意义的任务,并得到一个正确的性能评估。1.原理精讲为什么需要MaskedLoss?在训练神经网络时,我们通常会用一个批次(batch)的数据进行训练,而不是一次只用一个样本。对于自然语言处理任务,
- Transformer模型Decoder原理精讲及其PyTorch逐行实现
老鱼说AI
transformerpytorch深度学习人工智能学习python
原理:Decoder的核心是一个自回归(Auto-regressive)的生成器。它的任务是在给定源序列的编码表示(encoder_outputs)和已生成的目标序列部分(y_1,...,y_{t-1})的条件下,预测出下一个词y_t的概率分布。一个标准的DecoderLayer包含三个核心子层:1.带掩码的多头自注意力(MaskedMulti-HeadSelf-Attention):用于处理已生
- 2025暑期—07YOLO-YOLOV11
宇称不守恒4.0
人工智能图像处理YOLO深度学习人工智能
安装的环境包括YoloV11,torch2.32.4Clip1.0D2LOpenCV4.12等安装1Conda环境安装YOLOcondacreate--prefix=D:/YOLO11/yolo11_envpython=3.10condaactivateD:\YOLO11\yolo11_envPytorch网站确定condainstallpytorch==2.3.0torchvision==0.1
- PyTorch中的词嵌入层(nn.Embedding)详解与实践指南
慕婉0307
自然语言处理pytorchembedding人工智能
一、词嵌入(WordEmbedding)简介词嵌入是自然语言处理(NLP)中的一项核心技术,它将离散的词语映射到连续的向量空间中。通过词嵌入,语义相似的词语在向量空间中的位置也会相近。为什么需要词嵌入?解决维度灾难:传统one-hot编码维度等于词汇表大小,而词嵌入维度可自定义捕捉语义关系:通过向量空间中的距离反映词语间的语义关系迁移学习:预训练的词嵌入可以在不同任务间共享二、PyTorch中的n
- jquery实现的jsonp掉java后台
知了ing
javajsonpjquery
什么是JSONP?
先说说JSONP是怎么产生的:
其实网上关于JSONP的讲解有很多,但却千篇一律,而且云里雾里,对于很多刚接触的人来讲理解起来有些困难,小可不才,试着用自己的方式来阐释一下这个问题,看看是否有帮助。
1、一个众所周知的问题,Ajax直接请求普通文件存在跨域无权限访问的问题,甭管你是静态页面、动态网页、web服务、WCF,只要是跨域请求,一律不准;
2、
- Struts2学习笔记
caoyong
struts2
SSH : Spring + Struts2 + Hibernate
三层架构(表示层,业务逻辑层,数据访问层) MVC模式 (Model View Controller)
分层原则:单向依赖,接口耦合
1、Struts2 = Struts + Webwork
2、搭建struts2开发环境
a>、到www.apac
- SpringMVC学习之后台往前台传值方法
满城风雨近重阳
springMVC
springMVC控制器往前台传值的方法有以下几种:
1.ModelAndView
通过往ModelAndView中存放viewName:目标地址和attribute参数来实现传参:
ModelAndView mv=new ModelAndView();
mv.setViewName="success
- WebService存在的必要性?
一炮送你回车库
webservice
做Java的经常在选择Webservice框架上徘徊很久,Axis Xfire Axis2 CXF ,他们只有一个功能,发布HTTP服务然后用XML做数据传输。
是的,他们就做了两个功能,发布一个http服务让客户端或者浏览器连接,接收xml参数并发送xml结果。
当在不同的平台间传输数据时,就需要一个都能解析的数据格式。
但是为什么要使用xml呢?不能使json或者其他通用数据
- js年份下拉框
3213213333332132
java web ee
<div id="divValue">test...</div>测试
//年份
<select id="year"></select>
<script type="text/javascript">
window.onload =
- 简单链式调用的实现技术
归来朝歌
方法调用链式反应编程思想
在编程中,我们可以经常遇到这样一种场景:一个实例不断调用它自身的方法,像一条链条一样进行调用
这样的调用你可能在Ajax中,在页面中添加标签:
$("<p>").append($("<span>").text(list[i].name)).appendTo("#result");
也可能在HQ
- JAVA调用.net 发布的webservice 接口
darkranger
webservice
/**
* @Title: callInvoke
* @Description: TODO(调用接口公共方法)
* @param @param url 地址
* @param @param method 方法
* @param @param pama 参数
* @param @return
* @param @throws BusinessException
- Javascript模糊查找 | 第一章 循环不能不重视。
aijuans
Way
最近受我的朋友委托用js+HTML做一个像手册一样的程序,里面要有可展开的大纲,模糊查找等功能。我这个人说实在的懒,本来是不愿意的,但想起了父亲以前教我要给朋友搞好关系,再加上这也可以巩固自己的js技术,于是就开始开发这个程序,没想到却出了点小问题,我做的查找只能绝对查找。具体的js代码如下:
function search(){
var arr=new Array("my
- 狼和羊,该怎么抉择
atongyeye
工作
狼和羊,该怎么抉择
在做一个链家的小项目,只有我和另外一个同事两个人负责,各负责一部分接口,我的接口写完,并全部测联调试通过。所以工作就剩下一下细枝末节的,工作就轻松很多。每天会帮另一个同事测试一些功能点,协助他完成一些业务型不强的工作。
今天早上到公司没多久,领导就在QQ上给我发信息,让我多协助同事测试,让我积极主动些,有点责任心等等,我听了这话,心里面立马凉半截,首先一个领导轻易说
- 读取android系统的联系人拨号
百合不是茶
androidsqlite数据库内容提供者系统服务的使用
联系人的姓名和号码是保存在不同的表中,不要一下子把号码查询来,我开始就是把姓名和电话同时查询出来的,导致系统非常的慢
关键代码:
1, 使用javabean操作存储读取到的数据
package com.example.bean;
/**
*
* @author Admini
- ORACLE自定义异常
bijian1013
数据库自定义异常
实例:
CREATE OR REPLACE PROCEDURE test_Exception
(
ParameterA IN varchar2,
ParameterB IN varchar2,
ErrorCode OUT varchar2 --返回值,错误编码
)
AS
/*以下是一些变量的定义*/
V1 NUMBER;
V2 nvarc
- 查看端号使用情况
征客丶
windows
一、查看端口
在windows命令行窗口下执行:
>netstat -aon|findstr "8080"
显示结果:
TCP 127.0.0.1:80 0.0.0.0:0 &
- 【Spark二十】运行Spark Streaming的NetworkWordCount实例
bit1129
wordcount
Spark Streaming简介
NetworkWordCount代码
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
- Struts2 与 SpringMVC的比较
BlueSkator
struts2spring mvc
1. 机制:spring mvc的入口是servlet,而struts2是filter,这样就导致了二者的机制不同。 2. 性能:spring会稍微比struts快。spring mvc是基于方法的设计,而sturts是基于类,每次发一次请求都会实例一个action,每个action都会被注入属性,而spring基于方法,粒度更细,但要小心把握像在servlet控制数据一样。spring
- Hibernate在更新时,是可以不用session的update方法的(转帖)
BreakingBad
Hibernateupdate
地址:http://blog.csdn.net/plpblue/article/details/9304459
public void synDevNameWithItil()
{Session session = null;Transaction tr = null;try{session = HibernateUtil.getSession();tr = session.beginTran
- 读《研磨设计模式》-代码笔记-观察者模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
import java.util.Observable;
import java.util.Observer;
/**
* “观
- 重置MySQL密码
chenhbc
mysql重置密码忘记密码
如果你也像我这么健忘,把MySQL的密码搞忘记了,经过下面几个步骤就可以重置了(以Windows为例,Linux/Unix类似):
1、关闭MySQL服务
2、打开CMD,进入MySQL安装目录的bin目录下,以跳过权限检查的方式启动MySQL
mysqld --skip-grant-tables
3、新开一个CMD窗口,进入MySQL
mysql -uroot
 
- 再谈系统论,控制论和信息论
comsci
设计模式生物能源企业应用领域模型
再谈系统论,控制论和信息论
偶然看
- oracle moving window size与 AWR retention period关系
daizj
oracle
转自: http://tomszrp.itpub.net/post/11835/494147
晚上在做11gR1的一个awrrpt报告时,顺便想调整一下AWR snapshot的保留时间,结果遇到了ORA-13541这样的错误.下面是这个问题的发生和解决过程.
SQL> select * from v$version;
BANNER
-------------------
- Python版B树
dieslrae
python
话说以前的树都用java写的,最近发现python有点生疏了,于是用python写了个B树实现,B树在索引领域用得还是蛮多了,如果没记错mysql的默认索引好像就是B树...
首先是数据实体对象,很简单,只存放key,value
class Entity(object):
'''数据实体'''
def __init__(self,key,value)
- C语言冒泡排序
dcj3sjt126com
算法
代码示例:
# include <stdio.h>
//冒泡排序
void sort(int * a, int len)
{
int i, j, t;
for (i=0; i<len-1; i++)
{
for (j=0; j<len-1-i; j++)
{
if (a[j] > a[j+1]) // >表示升序
- 自定义导航栏样式
dcj3sjt126com
自定义
-(void)setupAppAppearance
{
[[UILabel appearance] setFont:[UIFont fontWithName:@"FZLTHK—GBK1-0" size:20]];
[UIButton appearance].titleLabel.font =[UIFont fontWithName:@"FZLTH
- 11.性能优化-优化-JVM参数总结
frank1234
jvm参数性能优化
1.堆
-Xms --初始堆大小
-Xmx --最大堆大小
-Xmn --新生代大小
-Xss --线程栈大小
-XX:PermSize --永久代初始大小
-XX:MaxPermSize --永久代最大值
-XX:SurvivorRatio --新生代和suvivor比例,默认为8
-XX:TargetSurvivorRatio --survivor可使用
- nginx日志分割 for linux
HarborChung
nginxlinux脚本
nginx日志分割 for linux 默认情况下,nginx是不分割访问日志的,久而久之,网站的日志文件将会越来越大,占用空间不说,如果有问题要查看网站的日志的话,庞大的文件也将很难打开,于是便有了下面的脚本 使用方法,先将以下脚本保存为 cutlog.sh,放在/root 目录下,然后给予此脚本执行的权限
复制代码代码如下:
chmo
- Spring4新特性——泛型限定式依赖注入
jinnianshilongnian
springspring4泛型式依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- centOS安装GCC和G++
liuxihope
centosgcc
Centos支持yum安装,安装软件一般格式为yum install .......,注意安装时要先成为root用户。
按照这个思路,我想安装过程如下:
安装gcc:yum install gcc
安装g++: yum install g++
实际操作过程发现,只能有gcc安装成功,而g++安装失败,提示g++ command not found。上网查了一下,正确安装应该
- 第13章 Ajax进阶(上)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- How to determine BusinessObjects service pack and fix pack
blueoxygen
BO
http://bukhantsov.org/2011/08/how-to-determine-businessobjects-service-pack-and-fix-pack/
The table below is helpful. Reference
BOE XI 3.x
12.0.0.
y BOE XI 3.0 12.0.
x.
y BO
- Oracle里的自增字段设置
tomcat_oracle
oracle
大家都知道吧,这很坑,尤其是用惯了mysql里的自增字段设置,结果oracle里面没有的。oh,no 我用的是12c版本的,它有一个新特性,可以这样设置自增序列,在创建表是,把id设置为自增序列
create table t
(
id number generated by default as identity (start with 1 increment b
- Spring Security(01)——初体验
yang_winnie
springSecurity
Spring Security(01)——初体验
博客分类: spring Security
Spring Security入门安全认证
首先我们为Spring Security专门建立一个Spring的配置文件,该文件就专门用来作为Spring Security的配置