- BEYOND BINARY REWARDS: TRAINING LMS TOREASON ABOUT THEIR UNCERTAINTY
樱花的浪漫
大模型与智能体对抗生成网络与动作识别强化学习人工智能语言模型自然语言处理机器学习深度学习
https://gist.github.com/josherich/8a30dbf3d6ae0cae1048c3331f38fe80https://gist.github.com/josherich/8a30dbf3d6ae0cae1048c3331f38fe801引言与此担忧一致,研究表明,即使最初校准良好的大型语言模型(LLMs)在RL训练后也会变得过度自信(Lengetal.,2
- 2019-11-2
爱吃鱼的我和猫
小宝看我吃早饭,麻利的跑到我身边,爬上我的腿坐好。指着桌子上的炒鸡蛋,说:“瑞霖要吃这个!”奶奶看着我说:“这两天有点没吃饱!”我知道,因为小宝感冒了,我让奶奶把蛋、肉、水果都给小宝停了,只让他吃清谈一些的食物。可能纯素的饮食让他觉得吃不饱吧。奶奶用勺子挖了一块给小宝。小宝很开心!小宝又把我面前的小碟拿了过去,对我说:“妈妈,这是RL的碟子,把鸡蛋放这里面。”我把一个水煮蛋给他放在碟子里。他吃着炒
- 【强化学习】01
第一章:强化学习基础概念与核心要素的基石强化学习(ReinforcementLearning,RL)是一种机器学习范式,它关注智能体(Agent)如何在特定环境(Environment)中通过与环境的交互来学习如何做出决策,以最大化某种累积奖励。与监督学习和无监督学习不同,强化学习不依赖于预先标注好的数据集,而是通过“试错”的方式进行学习。1.1强化学习的独特学习范式在传统的机器学习领域,监督学习
- 【Python】Gym 库:于开发和比较强化学习(Reinforcement Learning, RL)算法
彬彬侠
Python基础pythonGym强化学习RLGymnasium
Gym是Python中一个广泛使用的开源库,用于开发和比较强化学习(ReinforcementLearning,RL)算法。它最初由OpenAI开发,提供标准化的环境接口,允许开发者在各种任务(如游戏、机器人控制、模拟物理系统)中测试RL算法。Gym的设计简单且灵活,适合学术研究和工业应用。2022年,Gym被整合到Gymnasium(由FaramaFoundation维护)中,成为主流的强化学习
- 迈向大型推理模型:基于大型语言模型的强化推理综述(附教程)
LLM大模型
人工智能自然语言处理知识库本地化部署吴恩达大模型RAG
语言长期以来被认为是人类推理的基本工具。大型语言模型(LLM)的突破激发了大量研究兴趣,推动了利用这些模型解决复杂推理任务的探索。研究人员通过引入“思维”这一概念——即一系列代表推理过程中的中间步骤的标记——超越了简单的自回归标记生成。这一创新范式使LLMs能够模仿复杂的人类推理过程,如树搜索和反思性思维。近年来,学习推理的趋势逐渐兴起,强化学习(RL)被应用于训练LLMs掌握推理过程。这种方法通
- 强化学习 DAY1:什么是 RL、马尔科夫决策、贝尔曼方程
feifeikon
机器学习人工智能深度学习
第一部分RL基础:什么是RL与MRP、MDP1.1入门强化学习所需掌握的基本概念1.1.1什么是强化学习:依据策略执行动作-感知状态-得到奖励强化学习里面的概念、公式,相比ML/DL特别多,初学者刚学RL时,很容易被接连不断的概念、公式给绕晕,而且经常忘记概念与公式符号表达的一一对应。为此,学习RL的第一步就是一定要扎实关于RL的一些最基本的概念、公式(不要在扎实基础的阶段图快或图囵吞枣,不然后面
- 「Tokens是胡扯」?Mamba作者炮轰Transformer,揭秘AI模型致命缺陷 | AI早报
未来世界2099
AI日报人工智能transformer深度学习业界资讯
1、OpenAI疯狂挖角反击!Meta华人科学家+马斯克三员大将集体跳槽2、清华&NTU突破性研究:仅需2张图,AI即可重构3D空间认知3、极智嘉港股上市首日破发!清华系机器人公司市值153亿引关注4、星海图融资超1亿美金!美团、今日资本领投,估值暴涨3倍5、华人团队用RL打造AIAgent,种子轮狂揽1200万美元融资6、Skywork-R1V3.0震撼开源:高考数学142分,多学科推理能力直逼
- SPARKLE:深度剖析强化学习如何提升语言模型推理能力
摘要:强化学习(ReinforcementLearning,RL)已经成为赋予语言模型高级推理能力的主导范式。尽管基于RL的训练方法(例如GRPO)已经展示了显著的经验性收益,但对其优势的细致理解仍然不足。为了填补这一空白,我们引入了一个细粒度的分析框架,以剖析RL对推理的影响。我们的框架特别研究了被认为可以从RL训练中受益的关键要素:(1)计划遵循和执行,(2)问题分解,以及(3)改进的推理和知
- 服务器清理空间--主要是conda环境清理和删除
1.查看空间情况(base)zhouy24@RL-DSlab:~/zhouy24Files$df-hFilesystemSizeUsedAvailUse%Mountedonudev252G0252G0%/devtmpfs51G4.9M51G1%/run/dev/nvme0n1p31.9T1.7T42G98%/tmpfs252G800M252G1%/dev/shmtmpfs5.0M4.0K5.0M1
- 【Vue CLI】手把手教你撸插件
vivo互联网技术
本文首发于vivo互联网技术微信公众号链接:https://mp.weixin.qq.com/s/Rl8XLUX7isjXNUmbw0-wow作者:ZhuPing现如今Vue作为主流的前端框架之一,其健全的配套工具,活跃的开源社区,让广发码农热衷追捧。VueCLI作为其官方的开发构建工具,目前已更新迭代到4.x版本,其内部集成了日常开发用到的打包压缩等功能,简化了常规自己动手配置webpack的烦
- #Datawhale组队学习#7月-强化学习Task1
fzyz123
Datawhale组队学习强化学习人工智能AI
这里是Datawhale组织的组队学习《强化学习入门202507》,Datawhale是一个开源的社区。第一章绪论1.1为什么要学习强化学习?强化学习(ReinforcementLearning,RL)是机器学习中专注于智能体(Agent)如何通过与环境交互学习最优决策策略的分支。与监督学习依赖静态数据集、无监督学习聚焦数据内在结构不同,强化学习的核心在于序贯决策:智能体通过试错探索环境,根据行动
- AI Agent从零到精通:深度解析Workflow、Prompt、Multi-Agent Systems和RL Training
爱看烟花的码农
AIGCNLP人工智能prompt
1.AI智能体简介:从概念到应用1.1什么是AI智能体?AI智能体是一种自主智能体,能够根据用户输入的目标,自主规划、执行和优化任务,最终生成结果。它不同于传统聊天模型(如ChatGPT)的单次回答能力,而是能处理多步骤、工具依赖、动态调整的复杂任务。例如:任务:用户要求“撰写一篇关于AI伦理的文章”。智能体行为:搜索资料、整理信息、撰写草稿、校对优化,全程无需用户干预。制造业场景(ManuS):
- 《Unitree RL Gym 从 0 到 1 全解析》宇树G1机器人rl_gym、legged_game 与 rsl_rl 开源项目 代码详解&&逻辑梳理
前言:此文将对宇树的RL_Gym进行详细介绍。为什么写这篇文章?首先对于这个项目来说,目前网上很难找到能讲明白的,其次,兼顾打工生活&知识分享需要些动力;因此,我决定推出这一篇付费文章,从纯小白视角出发,深入剖析该项目(大佬们请轻喷),这篇文章主要进行难点解析、代码分析与解释、整体的逻辑梳理。这篇付费文章耗费了我7h+的撰写,希望能为读者解开长期困扰的难题,带来启发与收获。开源项目链接:https
- Python 强化学习算法实用指南(三)
绝不原创的飞龙
默认分类默认分类
原文:annas-archive.org/md5/e3819a6747796b03b9288831f4e2b00c译者:飞龙协议:CCBY-NC-SA4.0第十一章:理解黑盒优化算法在前几章中,我们研究了强化学习(RL)算法,从基于价值的方法到基于策略的方法,以及从无模型方法到基于模型的方法。在本章中,我们将提供另一种解决序列任务的方法,那就是使用一类黑盒算法——进化算法(EA)。EAs由进化机制
- Text2Reward学习笔记
1.提示词请问,“glew”是一个RL工程师常用的工具库吗?请问,thiscodebase主要是做什么用的呀?1.1解释代码是否可以请您根据thiscodebase的主要功能,参考PyTorch的文档格式和文档风格,使用Markdown格式为选中的代码行编写一段相应的文档说明呢?2.项目环境配置2.1新建环境[official]2.1.1Featurizecondacreate-p~/work/d
- ReAct (Reason and Act) OR 强化学习(Reinforcement Learning, RL)
SugarPPig
人工智能人工智能
这个问题触及了现代AI智能体(Agent)构建的两种核心思想。简单来说,ReAct是一种“调用专家”的模式,而强化学习(RL)是一种“从零试错”的模式。为了让你更清晰地理解,我们从一个生动的比喻开始,然后进行详细的对比。一个生动的比喻想象一下你要完成一项复杂的任务,比如“策划一场完美的生日派对”。ReAct的方式(像一位经验丰富的活动策划师)你是一位知识渊博的专家(大语言模型LLM)。你首先会思考
- 爆改RAG!用强化学习让你的检索增强生成系统“开挂”——从小白到王者的实战指南
许泽宇的技术分享
人工智能
“RAG不准?RL来救场!”——一位被RAG气哭的AI工程师前言:RAG的烦恼与AI炼丹师的自我修养在AI圈混久了,大家都知道RAG(Retrieval-AugmentedGeneration,检索增强生成)是大模型落地的“万金油”方案。无论是企业知识库、智能问答,还是搜索引擎升级,RAG都能插上一脚。但你用过RAG就知道,理想很丰满,现实很骨感。明明知识库里啥都有,问个“量子比特的数学表达式”,
- 【深度学习】强化学习(Reinforcement Learning, RL)主流架构解析
烟锁池塘柳0
机器学习与深度学习深度学习人工智能机器学习
强化学习(ReinforcementLearning,RL)主流架构解析摘要:本文将带你深入了解强化学习(ReinforcementLearning,RL)的几种核心架构,包括基于价值(Value-Based)、基于策略(Policy-Based)和演员-评论家(Actor-Critic)方法。我们将探讨它们的基本原理、优缺点以及经典算法,帮助你构建一个清晰的RL知识体系。文章目录强化学习(Rei
- 返利佣金最高软件的技术壁垒:基于强化学习的动态佣金算法架构揭秘
返利佣金最高软件的技术壁垒:基于强化学习的动态佣金算法架构揭秘大家好,我是阿可,微赚淘客系统及省赚客APP创始人,是个冬天不穿秋裤,天冷也要风度的程序猿!一、背景介绍在返利佣金软件中,动态佣金算法是提升用户活跃度和平台收益的关键技术。传统的佣金算法通常是静态的,无法根据用户的实时行为和市场动态进行调整。为了突破这一技术瓶颈,我们引入了强化学习(ReinforcementLearning,RL),通
- R7F0C020M2DFB-C#AA0 16位单片机微控制器MCU Renesas
R7F0C020M2DFB特点超低功耗科技:-VDD=1.6~5.5V的单电源、能以1.8V的低电压运行。-HALT模式-STOP模式-SNOOZE模式RL78CPU内核:-3段流水线的CISC哈佛体系结构-最短指令执行时间:能在高速(0.04167μs:以高速内部振荡器时钟24MHz运行时)到超低速(30.5μs:以副系统时钟32.768kHz运行时)之间变换。-地址空间:1M字节-通用寄存器:
- 强化学习RLHF详解
贝塔西塔
强化学习大模型人工智能深度学习机器学习算法语言模型
RLHF(ReinforcementLearningfromHumanFeedback)模型详解一、背景1.传统强化学习的局限性传统的强化学习(ReinforcementLearning,RL)依赖于预定义的奖励函数(RewardFunction),但在复杂任务(如自然语言生成、机器人控制)中,设计精确的奖励函数极为困难。例如:模糊目标:生成“高质量文本”难以量化,无法用简单的指标(如BLEU、R
- DeepSeek打破AI天花板:MoE架构+RL推理,效率提升5倍的底层逻辑
m0_74825409
面试学习路线阿里巴巴人工智能架构
文章目录一、引言二、MoE架构:高效计算的核心支撑(一)MoE架构概述(二)DeepSeekMoE架构的创新点(三)MoE架构的代码实现示例三、RL推理:智能提升的关键驱动(一)RL推理概述(二)R1的训练流程(三)RL推理中的关键技术(四)RL推理的代码实现示例四、MoE架构与RL推理的结合:效率提升的奥秘(一)计算效率的提升(二)推理能力的增强(三)整体性能的飞跃五、结论与展望《DeepSee
- 利用视觉-语言模型搭建机器人灵巧操作的支架
三谷秋水
智能体大模型计算机视觉语言模型机器人人工智能计算机视觉机器学习
25年6月来自斯坦福和德国卡尔斯鲁厄理工的论文“ScaffoldingDexterousManipulationwithVision-LanguageModels”。灵巧机械手对于执行复杂的操作任务至关重要,但由于演示收集和高维控制的挑战,其训练仍然困难重重。虽然强化学习(RL)可以通过在模拟中积累经验来缓解数据瓶颈,但它通常依赖于精心设计的、针对特定任务的奖励函数,这阻碍了其可扩展性和泛化能力。
- 常见的强化学习算法分类及其特点
ywfwyht
人工智能算法分类人工智能
强化学习(ReinforcementLearning,RL)是一种机器学习方法,通过智能体(Agent)与环境(Environment)的交互来学习如何采取行动以最大化累积奖励。以下是一些常见的强化学习算法分类及其特点:1.基于值函数的算法这些算法通过估计状态或状态-动作对的价值来指导决策。Q-Learning无模型的离线学习算法。通过更新Q值表来学习最优策略。更新公式:Q(s,a)←Q(s,a)
- ROS2 强化学习:案例与代码实战
芯动大师
ROS2学习目标检测人工智能
一、引言在机器人技术不断发展的今天,强化学习(RL)作为一种强大的机器学习范式,为机器人的智能决策和自主控制提供了新的途径。ROS2(RobotOperatingSystem2)作为新一代机器人操作系统,具有更好的实时性、分布式性能和安全性,为强化学习在机器人领域的应用提供了更坚实的基础。本文将通过一个具体案例,深入探讨ROS2与强化学习的结合应用,并提供相关代码实现。二、案例背景本案例以移动机器
- DeepSeek打破AI天花板:MoE架构+RL推理,效率提升5倍的底层逻辑
泡泡Java
AI大模型人工智能架构
文章目录一、引言二、MoE架构:高效计算的核心支撑(一)MoE架构概述(二)DeepSeekMoE架构的创新点(三)MoE架构的代码实现示例三、RL推理:智能提升的关键驱动(一)RL推理概述(二)R1的训练流程(三)RL推理中的关键技术(四)RL推理的代码实现示例四、MoE架构与RL推理的结合:效率提升的奥秘(一)计算效率的提升(二)推理能力的增强(三)整体性能的飞跃五、结论与展望《DeepSee
- 强化学习实战:从 Q-Learning 到 PPO 全流程
荣华富贵8
程序员的知识储备2程序员的知识储备3人工智能算法机器学习
1引言随着人工智能的快速发展,强化学习(ReinforcementLearning,RL)凭借其在复杂决策与控制问题上的卓越表现,已成为研究与应用的前沿热点。本文旨在从经典的Q-Learning算法入手,系统梳理从值迭代到策略优化的全流程技术细节,直至最具代表性的ProximalPolicyOptimization(PPO)算法,结合理论推导、代码实现与案例分析,深入探讨强化学习的核心原理、算法演
- 强化学习(Reinforcement Learning, RL)概览
MzKyle
人工智能人工智能强化学习机器学习机器人
一、强化学习的核心概念与定位1.定义强化学习是机器学习的分支,研究智能体(Agent)在动态环境中通过与环境交互,以最大化累积奖励为目标的学习机制。与监督学习(有标注数据)和无监督学习(无目标)不同,强化学习通过“试错”学习,不依赖先验知识,适合解决动态决策问题。2.核心要素智能体(Agent):执行决策的主体,如游戏AI、机器人。环境(Environment):智能体之外的一切,如棋盘、物理世界
- 动手学强化学习 第10章-Actor-Critic 算法 训练代码
zhqh100
算法深度学习pytorch人工智能
基于Hands-on-RL/第10章-Actor-Critic算法.ipynbatmain·boyu-ai/Hands-on-RL·GitHub理论Actor-Critic算法修改了警告和报错运行环境DebianGNU/Linux12Python3.9.19torch2.0.1gym0.26.2运行代码Actor-Critic.py#!/usr/bin/envpythonimportgymimpo
- 生成本地 微调 +强化学习 qwen3-4b 研究搭建流程步骤
行云流水AI笔记
人工智能
在本地微调并应用强化学习(RL)对Qwen-3-4B模型进行研究和搭建,是一个复杂但可行的过程。以下是一个详细的流程步骤,涵盖从环境准备、数据准备、模型微调到强化学习应用的各个阶段。一、环境准备硬件要求GPU:至少需要多块高性能GPU(如NVIDIAA100或V100),因为Qwen-3-4B模型参数量大,内存需求高。内存:建议至少128GBRAM,以确保数据处理和模型加载的流畅性。存储:高速SS
- Algorithm
香水浓
javaAlgorithm
冒泡排序
public static void sort(Integer[] param) {
for (int i = param.length - 1; i > 0; i--) {
for (int j = 0; j < i; j++) {
int current = param[j];
int next = param[j + 1];
- mongoDB 复杂查询表达式
开窍的石头
mongodb
1:count
Pg: db.user.find().count();
统计多少条数据
2:不等于$ne
Pg: db.user.find({_id:{$ne:3}},{name:1,sex:1,_id:0});
查询id不等于3的数据。
3:大于$gt $gte(大于等于)
&n
- Jboss Java heap space异常解决方法, jboss OutOfMemoryError : PermGen space
0624chenhong
jvmjboss
转自
http://blog.csdn.net/zou274/article/details/5552630
解决办法:
window->preferences->java->installed jres->edit jre
把default vm arguments 的参数设为-Xms64m -Xmx512m
----------------
- 文件上传 下载 解析 相对路径
不懂事的小屁孩
文件上传
有点坑吧,弄这么一个简单的东西弄了一天多,身边还有大神指导着,网上各种百度着。
下面总结一下遇到的问题:
文件上传,在页面上传的时候,不要想着去操作绝对路径,浏览器会对客户端的信息进行保护,避免用户信息收到攻击。
在上传图片,或者文件时,使用form表单来操作。
前台通过form表单传输一个流到后台,而不是ajax传递参数到后台,代码如下:
<form action=&
- 怎么实现qq空间批量点赞
换个号韩国红果果
qq
纯粹为了好玩!!
逻辑很简单
1 打开浏览器console;输入以下代码。
先上添加赞的代码
var tools={};
//添加所有赞
function init(){
document.body.scrollTop=10000;
setTimeout(function(){document.body.scrollTop=0;},2000);//加
- 判断是否为中文
灵静志远
中文
方法一:
public class Zhidao {
public static void main(String args[]) {
String s = "sdf灭礌 kjl d{';\fdsjlk是";
int n=0;
for(int i=0; i<s.length(); i++) {
n = (int)s.charAt(i);
if((
- 一个电话面试后总结
a-john
面试
今天,接了一个电话面试,对于还是初学者的我来说,紧张了半天。
面试的问题分了层次,对于一类问题,由简到难。自己觉得回答不好的地方作了一下总结:
在谈到集合类的时候,举几个常用的集合类,想都没想,直接说了list,map。
然后对list和map分别举几个类型:
list方面:ArrayList,LinkedList。在谈到他们的区别时,愣住了
- MSSQL中Escape转义的使用
aijuans
MSSQL
IF OBJECT_ID('tempdb..#ABC') is not null
drop table tempdb..#ABC
create table #ABC
(
PATHNAME NVARCHAR(50)
)
insert into #ABC
SELECT N'/ABCDEFGHI'
UNION ALL SELECT N'/ABCDGAFGASASSDFA'
UNION ALL
- 一个简单的存储过程
asialee
mysql存储过程构造数据批量插入
今天要批量的生成一批测试数据,其中中间有部分数据是变化的,本来想写个程序来生成的,后来想到存储过程就可以搞定,所以随手写了一个,记录在此:
DELIMITER $$
DROP PROCEDURE IF EXISTS inse
- annot convert from HomeFragment_1 to Fragment
百合不是茶
android导包错误
创建了几个类继承Fragment, 需要将创建的类存储在ArrayList<Fragment>中; 出现不能将new 出来的对象放到队列中,原因很简单;
创建类时引入包是:import android.app.Fragment;
创建队列和对象时使用的包是:import android.support.v4.ap
- Weblogic10两种修改端口的方法
bijian1013
weblogic端口号配置管理config.xml
一.进入控制台进行修改 1.进入控制台: http://127.0.0.1:7001/console 2.展开左边树菜单 域结构->环境->服务器-->点击AdminServer(管理) &
- mysql 操作指令
征客丶
mysql
一、连接mysql
进入 mysql 的安装目录;
$ bin/mysql -p [host IP 如果是登录本地的mysql 可以不写 -p 直接 -u] -u [userName] -p
输入密码,回车,接连;
二、权限操作[如果你很了解mysql数据库后,你可以直接去修改系统表,然后用 mysql> flush privileges; 指令让权限生效]
1、赋权
mys
- 【Hive一】Hive入门
bit1129
hive
Hive安装与配置
Hive的运行需要依赖于Hadoop,因此需要首先安装Hadoop2.5.2,并且Hive的启动前需要首先启动Hadoop。
Hive安装和配置的步骤
1. 从如下地址下载Hive0.14.0
http://mirror.bit.edu.cn/apache/hive/
2.解压hive,在系统变
- ajax 三种提交请求的方法
BlueSkator
Ajaxjqery
1、ajax 提交请求
$.ajax({
type:"post",
url : "${ctx}/front/Hotel/getAllHotelByAjax.do",
dataType : "json",
success : function(result) {
try {
for(v
- mongodb开发环境下的搭建入门
braveCS
运维
linux下安装mongodb
1)官网下载mongodb-linux-x86_64-rhel62-3.0.4.gz
2)linux 解压
gzip -d mongodb-linux-x86_64-rhel62-3.0.4.gz;
mv mongodb-linux-x86_64-rhel62-3.0.4 mongodb-linux-x86_64-rhel62-
- 编程之美-最短摘要的生成
bylijinnan
java数据结构算法编程之美
import java.util.HashMap;
import java.util.Map;
import java.util.Map.Entry;
public class ShortestAbstract {
/**
* 编程之美 最短摘要的生成
* 扫描过程始终保持一个[pBegin,pEnd]的range,初始化确保[pBegin,pEnd]的ran
- json数据解析及typeof
chengxuyuancsdn
jstypeofjson解析
// json格式
var people='{"authors": [{"firstName": "AAA","lastName": "BBB"},'
+' {"firstName": "CCC&
- 流程系统设计的层次和目标
comsci
设计模式数据结构sql框架脚本
流程系统设计的层次和目标
 
- RMAN List和report 命令
daizj
oraclelistreportrman
LIST 命令
使用RMAN LIST 命令显示有关资料档案库中记录的备份集、代理副本和映像副本的
信息。使用此命令可列出:
• RMAN 资料档案库中状态不是AVAILABLE 的备份和副本
• 可用的且可以用于还原操作的数据文件备份和副本
• 备份集和副本,其中包含指定数据文件列表或指定表空间的备份
• 包含指定名称或范围的所有归档日志备份的备份集和副本
• 由标记、完成时间、可
- 二叉树:红黑树
dieslrae
二叉树
红黑树是一种自平衡的二叉树,它的查找,插入,删除操作时间复杂度皆为O(logN),不会出现普通二叉搜索树在最差情况时时间复杂度会变为O(N)的问题.
红黑树必须遵循红黑规则,规则如下
1、每个节点不是红就是黑。 2、根总是黑的 &
- C语言homework3,7个小题目的代码
dcj3sjt126com
c
1、打印100以内的所有奇数。
# include <stdio.h>
int main(void)
{
int i;
for (i=1; i<=100; i++)
{
if (i%2 != 0)
printf("%d ", i);
}
return 0;
}
2、从键盘上输入10个整数,
- 自定义按钮, 图片在上, 文字在下, 居中显示
dcj3sjt126com
自定义
#import <UIKit/UIKit.h>
@interface MyButton : UIButton
-(void)setFrame:(CGRect)frame ImageName:(NSString*)imageName Target:(id)target Action:(SEL)action Title:(NSString*)title Font:(CGFloa
- MySQL查询语句练习题,测试足够用了
flyvszhb
sqlmysql
http://blog.sina.com.cn/s/blog_767d65530101861c.html
1.创建student和score表
CREATE TABLE student (
id INT(10) NOT NULL UNIQUE PRIMARY KEY ,
name VARCHAR
- 转:MyBatis Generator 详解
happyqing
mybatis
MyBatis Generator 详解
http://blog.csdn.net/isea533/article/details/42102297
MyBatis Generator详解
http://git.oschina.net/free/Mybatis_Utils/blob/master/MybatisGeneator/MybatisGeneator.
- 让程序员少走弯路的14个忠告
jingjing0907
工作计划学习
无论是谁,在刚进入某个领域之时,有再大的雄心壮志也敌不过眼前的迷茫:不知道应该怎么做,不知道应该做什么。下面是一名软件开发人员所学到的经验,希望能对大家有所帮助
1.不要害怕在工作中学习。
只要有电脑,就可以通过电子阅读器阅读报纸和大多数书籍。如果你只是做好自己的本职工作以及分配的任务,那是学不到很多东西的。如果你盲目地要求更多的工作,也是不可能提升自己的。放
- nginx和NetScaler区别
流浪鱼
nginx
NetScaler是一个完整的包含操作系统和应用交付功能的产品,Nginx并不包含操作系统,在处理连接方面,需要依赖于操作系统,所以在并发连接数方面和防DoS攻击方面,Nginx不具备优势。
2.易用性方面差别也比较大。Nginx对管理员的水平要求比较高,参数比较多,不确定性给运营带来隐患。在NetScaler常见的配置如健康检查,HA等,在Nginx上的配置的实现相对复杂。
3.策略灵活度方
- 第11章 动画效果(下)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- FAQ - SAP BW BO roadmap
blueoxygen
BOBW
http://www.sdn.sap.com/irj/boc/business-objects-for-sap-faq
Besides, I care that how to integrate tightly.
By the way, for BW consultants, please just focus on Query Designer which i
- 关于java堆内存溢出的几种情况
tomcat_oracle
javajvmjdkthread
【情况一】:
java.lang.OutOfMemoryError: Java heap space:这种是java堆内存不够,一个原因是真不够,另一个原因是程序中有死循环; 如果是java堆内存不够的话,可以通过调整JVM下面的配置来解决: <jvm-arg>-Xms3062m</jvm-arg> <jvm-arg>-Xmx
- Manifest.permission_group权限组
阿尔萨斯
Permission
结构
继承关系
public static final class Manifest.permission_group extends Object
java.lang.Object
android. Manifest.permission_group 常量
ACCOUNTS 直接通过统计管理器访问管理的统计
COST_MONEY可以用来让用户花钱但不需要通过与他们直接牵涉的权限
D