- Python 爬虫实战:抓取哔哩哔哩收藏夹视频(API 逆向 + 视频分类整理)
西攻城狮北
python爬虫音视频
引言哔哩哔哩(B站)作为国内知名的视频分享平台,拥有丰富多样的视频资源和活跃的用户社区。对于视频创作者、数据分析人员或爬虫学习者来说,抓取B站收藏夹中的视频数据,不仅能帮助我们更好地了解用户喜好和视频内容,还能为创作和研究提供有力支持。本文将深入浅出地讲解如何通过Python爬虫实现抓取哔哩哔哩收藏夹视频,并对其进行分类整理,涵盖从环境搭建、API逆向分析到数据处理与存储等关键步骤,旨在为读者提供
- 18 - GCNet
Leo Chaw
深度学习算法实现深度学习计算机视觉人工智能pytorch
论文《GCNet:Non-localNetworksMeetSqueeze-ExcitationNetworksandBeyond》1、作用GCNet通过聚合每个查询位置的全局上下文信息来捕获长距离依赖关系,从而改善了图像/视频分类、对象检测和分割等一系列识别任务的性能。非局部网络(NLNet)首次提出了通过聚合查询特定的全局上下文到每个查询位置来捕获长距离依赖的方法。GCNet在此基础上进行了改
- 机器学习第二讲:对比传统编程:解决复杂规则场景
kovlistudio
机器学习人工智能技术机器学习人工智能
机器学习第二讲:对比传统编程:解决复杂规则场景资料取自《零基础学机器学习》。查看总目录:学习大纲关于DeepSeek本地部署指南可以看下我之前写的文章:DeepSeekR1本地与线上满血版部署:超详细手把手指南一、场景化对比:传统编程VS机器学习案例:开发抖音推荐系统如何运作(此处引用教材[第一章]对比实例1)传统编程人工制定规则定义用户年龄标记视频分类编写点击权重算法机器学习数据自动学习用户观看
- 推荐项目:基于3D ResNet的视频分类库
周琰策Scott
推荐项目:基于3DResNet的视频分类库video-classification-3d-cnn-pytorchVideoclassificationtoolsusing3DResNet项目地址:https://gitcode.com/gh_mirrors/vi/video-classification-3d-cnn-pytorch在这个数字化的时代,视频数据的增长速度超乎想象,随之而来的是对视频
- PyTorchVideo实战:从零开始构建高效视频分类模型
deephub
人工智能pytorch深度学习视频分类
视频理解作为机器学习的核心领域,为动作识别、视频摘要和监控等应用提供了技术基础。本教程将详细介绍如何利用PyTorchVideo和PyTorchLightning两个强大框架,构建基于Kinetics数据集训练的3DResNet模型,实现高效的视频分类流程。PyTorchVideo与PyTorchLightning的技术优势PyTorchVideo提供了视频处理专用的预构建模型、数据集和增强功能,
- 探索视频分类的新境界:`video-transformers`
高慈鹃Faye
探索视频分类的新境界:video-transformersvideo-transformersEasiestwayoffine-tuningHuggingFacevideoclassificationmodels项目地址:https://gitcode.com/gh_mirrors/vi/video-transformers在人工智能的世界中,视频理解是当前的热门研究领域之一,而video-tra
- 深度学习进阶,Keras视频分类
m0_60666452
程序员深度学习keras人工智能
对于每个帧,通过CNN传递帧单独和_独立**地_对每个帧进行分类选择具有最大相应概率的标签标记帧并将输出帧写入磁盘不过,这种方法存在问题-如果您曾经尝试将简单的图像分类应用于视频分类,您可能会遇到某种**“预测闪烁”,**如本节顶部视频中所示。请注意,在这个可视化中,我们看到我们的CNN在两个预测之间移动:"足球"和正确的标签"weight_lifting"。视频显然是举重,我们希望我们的整个视频
- 【hadoop】基于hive的B站用户行为大数据分析
火龙谷
hadoophivehadoop数据仓库
1.需求分析b站现在积累有用户数据和视频列表数据,为了配合市场部门做好用户运营工作,需要对b站的用户行为进行分析,其具体需求如下所示:统计b站视频不同评分等级(行转列)的视频数。统计上传b站视频最多的用户Top10,以及这些用户上传的视频观看次数在前10的视频。统计b站每个类别视频观看数topn。统计b站视频分类热度topn。统计b站视频观看数topn。2.表结构2.1user表结构2.2vide
- Python爬虫教程:如何通过接口批量下载视频封面(FFmpeg技术实现)
Python爬虫项目
python爬虫开发语言数据库数据分析scrapyselenium
引言随着在线视频平台的蓬勃发展,视频封面作为视频内容的预览图,一直以来都是观众对视频的第一印象。在爬取视频资源时,很多开发者和研究者往往只关注视频本身,而忽略了视频封面。实际上,视频封面不仅能提供重要的信息(例如视频标题、主题或情感等),而且它们也能作为数据集中的重要属性,用于视频分类、推荐系统等应用。在这篇博客中,我们将深入探讨如何使用Python通过接口批量下载视频封面,利用FFmpeg等技术
- 【模块】Non-local Neural
dearr__
扒网络模块深度学习pytorchpython
论文《Non-localNeuralNetworks》作用非局部神经网络通过非局部操作捕获长距离依赖,这对于深度神经网络来说至关重要。这些操作允许模型在空间、时间或时空中的任何位置间直接计算相互作用,从而捕获长距离的交互和依赖关系。这种方法对于视频分类、对象检测/分割以及姿态估计等任务表现出了显著的改进。机制非局部操作通过在输入特征图的所有位置上计算响应的加权和来实现,其中权重由位置之间的关系(如
- 深度学习的一些方向
xinpao
深度学习人工智能
深度学习的一些方向目录深度学习的一些方向一、多模态1.特征提取(featureextraction)2.文本转图像3.可视化问题回答二、计算机视觉1.深度估计(depthestimation)2.图像分类(imageclassification)3.图片分割(ImageSegmentation)4.图像转图像(imagetoimage)5.物体检测(objectdetection)6.视频分类(V
- 微信小程序视频点播在线视频学习系统 毕业设计 课程设计(1)首页_微信小程序视频功能设计流程图
字节全栈_kYu
微信小程序学习课程设计
06-19关于违规会员处理的通知视频分类最新更新课程所有课程HTML入门到精通3651人报名免费HTML入门到精通3651人报名免费HTML入门到精通3651人报名免费HTML入门到精通3651人报名免费###wxss代码/*广告图片*/.ad01{width:100%;/*宽度100%*/}.qukuai{display:flex;align-items:center;background-co
- 大数据真实面试题---SQL
The博宇
大数据面试题——SQL大数据mysqlsql数据库bigdata
视频号数据分析组外包招聘笔试题时间限时45分钟完成。题目根据3张表表结构,写出具体求解的SQL代码(搞笑品类定义:视频分类或者视频创建者分类为“搞笑”)1、表创建语句:createtablet_user_video_action_d(dsint,user_idstring,video_idstring,action_typeint,`timestamp`bigint)rowformatdelimi
- 基于django的视频点播网站开发-step9-后台视频管理功能
山东好汉Tim
毕业设计合集python
从本讲开始,我们开始视频管理功能的开发,视频管理包括视频上传、视频列表、视频编辑、视频删除。另外还有视频分类的功能,会一同讲解。这一讲非常重要,因为你将学习到一些之前没有学过的技术,比如大文件上传技术。视频上传我们先来实现视频的上传,视频的上传采用的是分块上传的策略,并用了分块上传类库:django_chunked_upload,使用该类库,再配合前端上传js库(jquery.fileupload
- 使用深度学习对视频进行分类
jk_101
Matlab深度学习音视频分类
目录加载预训练卷积网络加载数据将帧转换为特征向量准备训练数据创建LSTM网络指定训练选项训练LSTM网络组合视频分类网络使用新数据进行分类辅助函数此示例说明如何通过将预训练图像分类模型和LSTM网络相结合来创建视频分类网络。要为视频分类创建深度学习网络,请执行以下操作:使用预训练卷积神经网络(如GoogLeNet)将视频转换为特征向量序列,以从每帧中提取特征。基于序列训练LSTM网络来预测视频标签
- 【电子书+代码】Sklearn,Keras与Tensorflow机器学习实用指南
Wang_AI
我们都知道:Scikit-Learn,Keras,Tensorflow是机器学习工具链的重要组成部分。本书的作者,根据上述三个机器学习工具箱,融汇贯通成一个个机器学习实例,让即使对人工智能了解不多的程序员也可以使用简单高效的工具来实现机器学习任务。作者简介:AurelienGeron是一名机器学习顾问和讲师。他曾在谷歌公司效力,2013年至2016年,他领导着YouTube的视频分类团队。他曾是几
- seq2seq编码器-解码器实现
liaolaa
深度学习人工智能自然语言处理pytorch语言模型
我们在之前的文章快速上手LSTM-CSDN博客中提及了RNN的几种不同的类型,其中有同步的manytomany的根据视频的每一帧对视频分类任务,以及异步的manytomany文本翻译。对于这种输入和输出不等长的序列,我们采用seq2seq(sequencetosequence)模型解决。1.Seq2seqseq2seq是由encoder(编码器)和decoder(解码器)构成,这个encoder和
- 3dcnn视频分类算法-pytorch上分之路
lth在海上漂
torch学习
3DCNN-视频分类项目结构config.pydatalist.pymodel.pytrain.py最后项目结构config.pyimportargparse'''trainingsettingsmetavar参数,用来控制部分命令行参数的显示'''parser=argparse.ArgumentParser(description='PyTorchExampleforall')parser.ad
- 机器学习笔记 - 基于自定义数据集 + 3D CNN进行视频分类
坐望云起
深度学习从入门到精通机器学习深度学习3DCNN视频分类动作识别
一、简述这里主要介绍了基于自定义动作识别数据集训练用于视频分类的3D卷积神经网络(CNN)。3DCNN使用三维滤波器来执行卷积。内核能够在三个方向上滑动,而在2DCNN中它可以在二维上滑动。这里的模型主要基于D.Tran等人2017年的论文“动作识别的时空卷积研究”。https://arxiv.org/abs/1711.11248v3https://arxiv.org/abs/1711.11248
- 大数据开发之Hive(统计影音视频网站的常规指标)
Key-Key
大数据hivehadoop
第11章:Hive实战11.1数据结构1、视频表字段备注详细描述videoId视频唯一id(String)11位字符串uploader视频上传者(String)上传视频的用户名Stringage视频年龄(int)视频在平台上的整天数category视频类别(Array)上传视频指定的视频分类length视频长度(Int)整形数字标识的视频长度views观看次数(Int)视频被浏览的次数rate视频
- 深度探析卷积神经网络(CNN)在图像视觉与自然语言处理领域的应用与优势
cooldream2009
AI技术大模型基础NLP知识cnn自然语言处理人工智能
目录前言1CNN网络结构与工作原理1.1输入层1.2卷积层1.3最大池化层1.4全连接层2应用领域2.1图像视觉领域中CNN的应用2.2NLP领域中CNN的应用3CNN的限制与未来展望3.1CNN的挑战3.2CNN的展望结语前言卷积神经网络(CNN)作为一种强大的深度学习模型,在图像视觉和自然语言处理领域展现出了广泛的应用。其独特的网络结构以及层次化的特征学习使其成为目标检测、语音识别、视频分类以
- Video classification with UniFormer基于统一分类器的视频分类
卡拉比丘流形
论文阅读论文阅读人工智能算法深度学习
本文主要介绍了UniFormer:UnifiedTransformerforEfficientSpatial-TemporalRepresentationLearning代码:https://github.com/Sense-X/UniFormer/tree/main/video_classificationUNIFormer动机由于视频具有大量的局部冗余和复杂的全局依赖关系,因此从视频中学习丰富
- 17、InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks
C--G
#NLPpython
简介github(a)表示传统的视觉基础模型,如对分类任务进行预训练的ResNet。(b)表示视觉语言基础模型,例如CLIP,对图像-文本对进行预训练。(c)InternVL,它提供了一种将大规模视觉基础模型(即InternViT-6B)与大型语言模型对齐的可行方法,并且对于对比和生成任务都是通用的。 比较各种通用视觉语言任务的结果,包括图像分类、视频分类、图像文本检索、图像字幕和多模态对话。In
- python AI视觉实现口罩检测实时语音报警系统
qq_30895747
python智能算法python人工智能开发语言
前言本程序主要实现了python的opencv人工智能视觉模块的口罩检测实时语音检测报警系统。PaddlenHub模块PaddleHub是飞桨预训练模型管理和迁移学习工具,通过PaddleHub开发者可以使用高质量的预训练模型结合Fine-tuneAPI快速完成迁移学习到应用部署的全流程工作。其提供了飞桨生态下的高质量预训练模型,涵盖了图像分类、目标检测、词法分析、语义模型、情感分析、视频分类、图
- python安装paddlehub时出现JSONDecodeError的解决方法
qq_17219645
python深度学习迁移学习人工智能python
文章目录一、paddlehub是什么?二、错误描述1.引入库2.运行3.提示错误三、解决方法一、paddlehub是什么?paddlehub是由百度的飞桨预训练模型管理和迁移学习工具,通过paddlehub开发者可以使用高质量的预训练模型结合Fine-tuneAPI快速完成迁移学习到应用部署的全流程工作。其提供了图像分类、目标检测、词法分析、语义模型、情感分析、视频分类、图像生成、图像分割、文本审
- 视频分类(Classification)和摘要(Captioning)总结
watersink
videocaption人工智能深度学习
想象力比知识更重要。----爱因斯坦论文:DeepLearningforVideoClassificationandCaptioning视频分类是指将大量的视频数据按照一定的标准和规则进行分类和归类,以便于用户快速找到自己感兴趣的视频内容。视频分类可以基于不同的特征和属性进行,例如内容主题、风格、语言、地域等。常见的视频分类包括电影、电视剧、纪录片、动画片、体育赛事、音乐视频等。视频摘要是从一个较
- 2021-基于卷积和LSTM神经网络的视频分类时间融合方法在暴力检测中的应用
半分热度
暴恐检测计算机视觉深度学习
ATemporalFusionApproachforVideoClassificationwithConvolutionalandLSTMNeuralNetworksAppliedtoViolenceDetection通过读该文章,想起之前复现的一个代码,与本文不同的是,代码采用帧率从视频片段中截取图片,视频的帧率都是25,也就是1s提取25张图片,这样会有很多重复帧,本文采用的是1s提取2帧,代
- 【行动识别】基于LSTM实现视频分类附matlab代码
机器学习之星主
lstmmatlab人工智能rnn深度学习
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab仿真内容点击智能优化算法神经网络预测雷达通信无线传感器电力系统信号处理图像处理路径规划元胞自动机无人机⛄内容介绍笔者对行为识别技术的发展过程进行研究的基础上,深入分析了基于LSTM的视频行为识别技术的特点和实现方法,并针对视频语义中对时间
- UCF101视频分类之CNN-LSTM-Code总结
爬坑的小白95
深度学习python人工智能
'harvitronix/five-video-classification-methods'视频分类-Code总结环境要求准备工作提取视频帧CNN提取视频帧特征LSTM验证模型扩展Code:https://github.com/harvitronix/five-video-classification-methods.环境要求requirements:Keras>=2.0.2numpy>=1.1
- 基于LSTM的视频分类及其Matlab代码实现
YOUFDJ
lstmmatlab人工智能Matlab
基于LSTM的视频分类及其Matlab代码实现在本文中,我们将探讨如何使用LSTM(长短期记忆)神经网络来实现视频分类,并提供相应的Matlab代码示例。视频分类是计算机视觉领域的一个重要任务,它涉及将输入的视频数据分为不同的预定义类别。LSTM是一种递归神经网络(RNN)的变体,它在处理序列数据时具有很强的能力,适用于视频分类任务。通过学习视频序列中的时序特征,LSTM可以自动捕捉视频中的动态信
- 微信开发者验证接口开发
362217990
微信 开发者 token 验证
微信开发者接口验证。
Token,自己随便定义,与微信填写一致就可以了。
根据微信接入指南描述 http://mp.weixin.qq.com/wiki/17/2d4265491f12608cd170a95559800f2d.html
第一步:填写服务器配置
第二步:验证服务器地址的有效性
第三步:依据接口文档实现业务逻辑
这里主要讲第二步验证服务器有效性。
建一个
- 一个小编程题-类似约瑟夫环问题
BrokenDreams
编程
今天群友出了一题:
一个数列,把第一个元素删除,然后把第二个元素放到数列的最后,依次操作下去,直到把数列中所有的数都删除,要求依次打印出这个过程中删除的数。
&
- linux复习笔记之bash shell (5) 关于减号-的作用
eksliang
linux关于减号“-”的含义linux关于减号“-”的用途linux关于“-”的含义linux关于减号的含义
转载请出自出处:
http://eksliang.iteye.com/blog/2105677
管道命令在bash的连续处理程序中是相当重要的,尤其在使用到前一个命令的studout(标准输出)作为这次的stdin(标准输入)时,就显得太重要了,某些命令需要用到文件名,例如上篇文档的的切割命令(split)、还有
- Unix(3)
18289753290
unix ksh
1)若该变量需要在其他子进程执行,则可用"$变量名称"或${变量}累加内容
什么是子进程?在我目前这个shell情况下,去打开一个新的shell,新的那个shell就是子进程。一般状态下,父进程的自定义变量是无法在子进程内使用的,但通过export将变量变成环境变量后就能够在子进程里面应用了。
2)条件判断: &&代表and ||代表or&nbs
- 关于ListView中性能优化中图片加载问题
酷的飞上天空
ListView
ListView的性能优化网上很多信息,但是涉及到异步加载图片问题就会出现问题。
具体参看上篇文章http://314858770.iteye.com/admin/blogs/1217594
如果每次都重新inflate一个新的View出来肯定会造成性能损失严重,可能会出现listview滚动是很卡的情况,还会出现内存溢出。
现在想出一个方法就是每次都添加一个标识,然后设置图
- 德国总理默多克:给国人的一堂“震撼教育”课
永夜-极光
教育
http://bbs.voc.com.cn/topic-2443617-1-1.html德国总理默多克:给国人的一堂“震撼教育”课
安吉拉—默克尔,一位经历过社会主义的东德人,她利用自己的博客,发表一番来华前的谈话,该说的话,都在上面说了,全世界想看想传播——去看看默克尔总理的博客吧!
德国总理默克尔以她的低调、朴素、谦和、平易近人等品格给国人留下了深刻印象。她以实际行动为中国人上了一堂
- 关于Java继承的一个小问题。。。
随便小屋
java
今天看Java 编程思想的时候遇见一个问题,运行的结果和自己想想的完全不一样。先把代码贴出来!
//CanFight接口
interface Canfight {
void fight();
}
//ActionCharacter类
class ActionCharacter {
public void fight() {
System.out.pr
- 23种基本的设计模式
aijuans
设计模式
Abstract Factory:提供一个创建一系列相关或相互依赖对象的接口,而无需指定它们具体的类。 Adapter:将一个类的接口转换成客户希望的另外一个接口。A d a p t e r模式使得原本由于接口不兼容而不能一起工作的那些类可以一起工作。 Bridge:将抽象部分与它的实现部分分离,使它们都可以独立地变化。 Builder:将一个复杂对象的构建与它的表示分离,使得同
- 《周鸿祎自述:我的互联网方法论》读书笔记
aoyouzi
读书笔记
从用户的角度来看,能解决问题的产品才是好产品,能方便/快速地解决问题的产品,就是一流产品.
商业模式不是赚钱模式
一款产品免费获得海量用户后,它的边际成本趋于0,然后再通过广告或者增值服务的方式赚钱,实际上就是创造了新的价值链.
商业模式的基础是用户,木有用户,任何商业模式都是浮云.商业模式的核心是产品,本质是通过产品为用户创造价值.
商业模式还包括寻找需求
- JavaScript动态改变样式访问技术
百合不是茶
JavaScriptstyle属性ClassName属性
一:style属性
格式:
HTML元素.style.样式属性="值";
创建菜单:在html标签中创建 或者 在head标签中用数组创建
<html>
<head>
<title>style改变样式</title>
</head>
&l
- jQuery的deferred对象详解
bijian1013
jquerydeferred对象
jQuery的开发速度很快,几乎每半年一个大版本,每两个月一个小版本。
每个版本都会引入一些新功能,从jQuery 1.5.0版本开始引入的一个新功能----deferred对象。
&nb
- 淘宝开放平台TOP
Bill_chen
C++c物流C#
淘宝网开放平台首页:http://open.taobao.com/
淘宝开放平台是淘宝TOP团队的产品,TOP即TaoBao Open Platform,
是淘宝合作伙伴开发、发布、交易其服务的平台。
支撑TOP的三条主线为:
1.开放数据和业务流程
* 以API数据形式开放商品、交易、物流等业务;
&
- 【大型网站架构一】大型网站架构概述
bit1129
网站架构
大型互联网特点
面对海量用户、海量数据
大型互联网架构的关键指标
高并发
高性能
高可用
高可扩展性
线性伸缩性
安全性
大型互联网技术要点
前端优化
CDN缓存
反向代理
KV缓存
消息系统
分布式存储
NoSQL数据库
搜索
监控
安全
想到的问题:
1.对于订单系统这种事务型系统,如
- eclipse插件hibernate tools安装
白糖_
Hibernate
eclipse helios(3.6)版
1.启动eclipse 2.选择 Help > Install New Software...> 3.添加如下地址:
http://download.jboss.org/jbosstools/updates/stable/helios/ 4.选择性安装:hibernate tools在All Jboss tool
- Jquery easyui Form表单提交注意事项
bozch
jquery easyui
jquery easyui对表单的提交进行了封装,提交的方式采用的是ajax的方式,在开发的时候应该注意的事项如下:
1、在定义form标签的时候,要将method属性设置成post或者get,特别是进行大字段的文本信息提交的时候,要将method设置成post方式提交,否则页面会抛出跨域访问等异常。所以这个要
- Trie tree(字典树)的Java实现及其应用-统计以某字符串为前缀的单词的数量
bylijinnan
java实现
import java.util.LinkedList;
public class CaseInsensitiveTrie {
/**
字典树的Java实现。实现了插入、查询以及深度优先遍历。
Trie tree's java implementation.(Insert,Search,DFS)
Problem Description
Igna
- html css 鼠标形状样式汇总
chenbowen00
htmlcss
css鼠标手型cursor中hand与pointer
Example:CSS鼠标手型效果 <a href="#" style="cursor:hand">CSS鼠标手型效果</a><br/>
Example:CSS鼠标手型效果 <a href="#" style=&qu
- [IT与投资]IT投资的几个原则
comsci
it
无论是想在电商,软件,硬件还是互联网领域投资,都需要大量资金,虽然各个国家政府在媒体上都给予大家承诺,既要让市场的流动性宽松,又要保持经济的高速增长....但是,事实上,整个市场和社会对于真正的资金投入是非常渴望的,也就是说,表面上看起来,市场很活跃,但是投入的资金并不是很充足的......
 
- oracle with语句详解
daizj
oraclewithwith as
oracle with语句详解 转
在oracle中,select 查询语句,可以使用with,就是一个子查询,oracle 会把子查询的结果放到临时表中,可以反复使用
例子:注意,这是sql语句,不是pl/sql语句, 可以直接放到jdbc执行的
----------------------------------------------------------------
- hbase的简单操作
deng520159
数据库hbase
近期公司用hbase来存储日志,然后再来分析 ,把hbase开发经常要用的命令找了出来.
用ssh登陆安装hbase那台linux后
用hbase shell进行hbase命令控制台!
表的管理
1)查看有哪些表
hbase(main)> list
2)创建表
# 语法:create <table>, {NAME => <family&g
- C语言scanf继续学习、算术运算符学习和逻辑运算符
dcj3sjt126com
c
/*
2013年3月11日20:37:32
地点:北京潘家园
功能:完成用户格式化输入多个值
目的:学习scanf函数的使用
*/
# include <stdio.h>
int main(void)
{
int i, j, k;
printf("please input three number:\n"); //提示用
- 2015越来越好
dcj3sjt126com
歌曲
越来越好
房子大了电话小了 感觉越来越好
假期多了收入高了 工作越来越好
商品精了价格活了 心情越来越好
天更蓝了水更清了 环境越来越好
活得有奔头人会步步高
想做到你要努力去做到
幸福的笑容天天挂眉梢 越来越好
婆媳和了家庭暖了 生活越来越好
孩子高了懂事多了 学习越来越好
朋友多了心相通了 大家越来越好
道路宽了心气顺了 日子越来越好
活的有精神人就不显
- java.sql.SQLException: Value '0000-00-00' can not be represented as java.sql.Tim
feiteyizu
mysql
数据表中有记录的time字段(属性为timestamp)其值为:“0000-00-00 00:00:00”
程序使用select 语句从中取数据时出现以下异常:
java.sql.SQLException:Value '0000-00-00' can not be represented as java.sql.Date
java.sql.SQLException: Valu
- Ehcache(07)——Ehcache对并发的支持
234390216
并发ehcache锁ReadLockWriteLock
Ehcache对并发的支持
在高并发的情况下,使用Ehcache缓存时,由于并发的读与写,我们读的数据有可能是错误的,我们写的数据也有可能意外的被覆盖。所幸的是Ehcache为我们提供了针对于缓存元素Key的Read(读)、Write(写)锁。当一个线程获取了某一Key的Read锁之后,其它线程获取针对于同
- mysql中blob,text字段的合成索引
jackyrong
mysql
在mysql中,原来有一个叫合成索引的,可以提高blob,text字段的效率性能,
但只能用在精确查询,核心是增加一个列,然后可以用md5进行散列,用散列值查找
则速度快
比如:
create table abc(id varchar(10),context blog,hash_value varchar(40));
insert into abc(1,rep
- 逻辑运算与移位运算
latty
位运算逻辑运算
源码:正数的补码与原码相同例+7 源码:00000111 补码 :00000111 (用8位二进制表示一个数)
负数的补码:
符号位为1,其余位为该数绝对值的原码按位取反;然后整个数加1。 -7 源码: 10000111 ,其绝对值为00000111 取反加一:11111001 为-7补码
已知一个数的补码,求原码的操作分两种情况:
- 利用XSD 验证XML文件
newerdragon
javaxmlxsd
XSD文件 (XML Schema 语言也称作 XML Schema 定义(XML Schema Definition,XSD)。 具体使用方法和定义请参看:
http://www.w3school.com.cn/schema/index.asp
java自jdk1.5以上新增了SchemaFactory类 可以实现对XSD验证的支持,使用起来也很方便。
以下代码可用在J
- 搭建 CentOS 6 服务器(12) - Samba
rensanning
centos
(1)安装
# yum -y install samba
Installed:
samba.i686 0:3.6.9-169.el6_5
# pdbedit -a rensn
new password:123456
retype new password:123456
……
(2)Home文件夹
# mkdir /etc
- Learn Nodejs 01
toknowme
nodejs
(1)下载nodejs
https://nodejs.org/download/ 选择相应的版本进行下载 (2)安装nodejs 安装的方式比较多,请baidu下
我这边下载的是“node-v0.12.7-linux-x64.tar.gz”这个版本 (1)上传服务器 (2)解压 tar -zxvf node-v0.12.
- jquery控制自动刷新的代码举例
xp9802
jquery
1、html内容部分 复制代码代码示例: <div id='log_reload'>
<select name="id_s" size="1">
<option value='2'>-2s-</option>
<option value='3'>-3s-</option