(尚硅谷笔记)
在 Java 5.0 提供了 java.util.concurrent (简称 JUC )包,在此包中增加了在并发编程中很常用 的实用工具类,用于定义类似于线程的自定义子 系统,包括线程池、异步 IO 和轻量级任务框架。 提供可调的、灵活的线程池。还提供了设计用于 多线程上下文中的 Collection 实现等。
可见性:
可见性是一种复杂的属性,因为可见性中的错误总是会违背我们的直觉。通常,我们无法确保执行读操作的线程能适时地看到其他线程写入的值,有时甚至是根本不可能的事情。为了确保多个线程之间对内存写入操作的可见性,必须使用同步机制。
**可见性,是指线程之间的可见性,一个线程修改的状态对另一个线程是可见的。**也就是一个线程修改的结果。另一个线程马上就能看到。比如:用volatile修饰的变量,就会具有可见性。volatile修饰的变量不允许线程内部缓存和重排序,即直接修改内存。所以对其他线程是可见的。但是这里需要注意一个问题,volatile只能让被他修饰内容具有可见性,但不能保证它具有原子性。比如 volatile int a = 0;之后有一个操作 a++;这个变量a具有可见性,但是a++ 依然是一个非原子操作,也就是这个操作同样存在线程安全问题。
在 Java 中 volatile、synchronized 和 final 实现可见性。
原子性:
**原子是世界上的最小单位,具有不可分割性。**比如 a=0;(a非long和double类型) 这个操作是不可分割的,那么我们说这个操作时原子操作。再比如:a++; 这个操作实际是a = a + 1;是可分割的,所以他不是一个原子操作。非原子操作都会存在线程安全问题,需要我们使用同步技术(sychronized)来让它变成一个原子操作。一个操作是原子操作,那么我们称它具有原子性。java的concurrent包下提供了一些原子类,我们可以通过阅读API来了解这些原子类的用法。比如:AtomicInteger、AtomicLong、AtomicReference等。
在 Java 中 synchronized 和在 lock、unlock 中操作保证原子性。
有序性:
Java 语言提供了 volatile 和 synchronized 两个关键字来保证线程之间操作的有序性,volatile 是因为其本身包含“禁止指令重排序”的语义,synchronized 是由“一个变量在同一个时刻只允许一条线程对其进行 lock 操作”这条规则获得的,此规则决定了持有同一个对象锁的两个同步块只能串行执行。
在访问volatile变量时不会执行加锁操作,因此也就不会使执行线程阻塞,因此volatile变量是一种比sychronized关键字更轻量级的同步机制。
当对非 volatile 变量进行读写的时候,每个线程先从内存拷贝变量到CPU缓存中。如果计算机有多个CPU,每个线程可能在不同的CPU上被处理,这意味着每个线程可以拷贝到不同的 CPU cache 中。
而声明变量是 volatile 的,JVM 保证了每次读变量都从内存中读,跳过 CPU cache 这一步。
volatile 的读性能消耗与普通变量几乎相同,但是写操作稍慢,因为它需要在本地代码中插入许多内存屏障指令来保证处理器不发生乱序执行。
http://www.importnew.com/28263.html
ConcurrentHashMap
ConcurrentHashMap、ConcurrentSkipListMap、ConcurrentSkipListSet、 CopyOnWriteArrayList 和 CopyOnWriteArraySet。当期望许多线程访问一个给 定 collection 时,ConcurrentHashMap 通常优于同步的 HashMap, ConcurrentSkipListMap 通常优于同步的 TreeMap。当期望的读数和遍历远远 大于列表的更新数时,CopyOnWriteArrayList 优于同步的 ArrayList。
CountDownLatch
Callable 接口
/*
* 一、创建执行线程的方式三:实现 Callable 接口。 相较于实现 Runnable 接口的方式,方法可以有返回值,并且可以抛出异常。
*
* 二、执行 Callable 方式,需要 FutureTask 实现类的支持,用于接收运算结果。
FutureTask 是 Future 接口的实现类
*/
public class TestCallable {
public static void main(String[] args) {
ThreadDemo td = new ThreadDemo();
//1.执行 Callable 方式,需要 FutureTask 实现类的支持,用于接收运算结果。
FutureTask<Integer> result = new FutureTask<>(td);
new Thread(result).start();
//2.接收线程运算后的结果
try {
Integer sum = result.get(); //FutureTask 可用于 闭锁
System.out.println(sum);
System.out.println("------------------------------------");
} catch (InterruptedException | ExecutionException e) {
e.printStackTrace();
}
}
}
class ThreadDemo implements Callable<Integer> {
@Override
public Integer call() throws Exception {
int sum = 0;
for (int i = 0; i <= 100000; i++) {
sum += i;
}
return sum;
}
}
显示锁 Lock
在 Java 5.0 之前,协调共享对象的访问时可以使用的机 制只有 synchronized 和 volatile 。Java 5.0 后增加了一些 新的机制,但并不是一种替代内置锁的方法,而是当内 置锁不适用时,作为一种可选择的高级功能。
ReentrantLock 实现了 Lock 接口,并提供了与 synchronized 相同的互斥性和内存可见性。但相较于 synchronized 提供了更高的处理锁的灵活性。
Lock和synchronized的区别
Condition
线程按序交替
读-写锁 ReadWriteLock
一个对象里面如果有多个synchronized方法,某一个时刻内,只要一个线程去调用 其中的一个synchronized方法了,其它的线程都只能等待,换句话说,某一个时刻 内,只能有唯一一个线程去访问这些synchronized方法
锁的是当前对象this,被锁定后,其它的线程都不能进入到当前对象的其它的 synchronized方法
加个普通方法后发现和同步锁无关
换成两个对象后,不是同一把锁了,情况立刻变化。
都换成静态同步方法后,情况又变化
所有的非静态同步方法用的都是同一把锁——实例对象本身,也就是说如果一个实 例对象的非静态同步方法获取锁后,该实例对象的其他非静态同步方法必须等待获 取锁的方法释放锁后才能获取锁,可是别的实例对象的非静态同步方法因为跟该实 例对象的非静态同步方法用的是不同的锁,所以毋须等待该实例对象已获取锁的非 静态同步方法释放锁就可以获取他们自己的锁。
所有的静态同步方法用的也是同一把锁——类对象本身,这两把锁是两个不同的对 象,所以静态同步方法与非静态同步方法之间是不会有竞态条件的。但是一旦一个 静态同步方法获取锁后,其他的静态同步方法都必须等待该方法释放锁后才能获取 锁,而不管是同一个实例对象的静态同步方法之间,还是不同的实例对象的静态同 步方法之间,只要它们同一个类的实例对象!
如果并发的线程数量很多,并且每个线程都是执行一个时间很短的任务就结束了,这样频繁创建线程就会大大降低系统的效率,因为频繁创建线程和销毁线程需要时间。
第四种获取线程的方法:线程池,一个 ExecutorService,它使用可能的几个池线程之 一执行每个提交的任务,通常使用 Executors 工厂方法配置。
它们均为大多数使用场景预定义了设置。
ScheduledExecutorService
Fork/Join 框架
Fork/Join 框架:就是在必要的情况下,将一个大任务,进行拆分(fork)成 若干个小任务(拆到不可再拆时),再将一个个的小任务运算的结果进 行 join 汇总。
Fork/Join 框架与线程池的区别
当执行新的任务时它可以将其拆分分成更小的任务执行,并将小任务加 到线程队列中,然后再从一个随机线程的队列中偷一个并把它放在自己的队 列中。