- Python 大数据分析(二)
绝不原创的飞龙
默认分类默认分类
原文:annas-archive.org/md5/5058e6970bd2a8d818ecc1f7f8fef74a译者:飞龙协议:CCBY-NC-SA4.0第六章:第五章处理缺失值和相关性分析学习目标到本章结束时,你将能够:使用PySpark检测和处理数据中的缺失值描述变量之间的相关性计算PySpark中两个或多个变量之间的相关性使用PySpark创建相关矩阵在本章中,我们将使用Iris数据集处理
- Hive 事务表(ACID)问题梳理
文章目录问题描述分析原因什么是事务表概念事务表和普通内部表的区别相关配置事务表的适用场景注意事项设计原理与实现文件管理格式参考博客问题描述工作中需要使用pyspark读取Hive中的数据,但是发现可以获取metastore,外部表的数据可以读取,内部表数据有些表报错信息是:AnalysisException:org.apache.hadoop.hive.ql.metadata.HiveExcept
- Python与大数据:Spark和PySpark实战教程
天天进步2015
python大数据pythonspark
引言在大数据时代,数据处理和分析能力成为核心竞争力。ApacheSpark作为新一代大数据计算引擎,以其高性能、易用性和强大的生态系统,成为数据工程师和分析师的首选工具。而PySpark作为Spark的Python接口,让Python开发者能够轻松驾驭大规模数据处理。本教程将带你系统了解Spark与PySpark的核心原理、环境搭建、典型应用场景及实战案例,助你快速上手大数据分析。目录Spark简
- 基于pyspark的北京历史天气数据分析及可视化_离线
大数据CLUB
spark数据分析可视化数据分析数据挖掘hadoop大数据spark
基于pyspark的北京历史天气数据分析及可视化项目概况[]点这里,查看所有项目[]数据类型北京历史天气数据开发环境centos7软件版本python3.8.18、hadoop3.2.0、spark3.1.2、mysql5.7.38、scala2.12.18、jdk8开发语言python开发流程数据上传(hdfs)->数据分析(spark)->数据存储(mysql)->后端(flask)->前端(
- 基于pyspark的北京历史天气数据分析及可视化_实时
大数据CLUB
spark数据分析可视化数据分析数据挖掘sparkhadoop大数据
基于pyspark的北京历史天气数据分析及可视化项目概况[]点这里,查看所有项目[]数据类型北京历史天气数据开发环境centos7软件版本python3.8.18、hadoop3.2.0、spark3.1.2、mysql5.7.38、scala2.12.18、jdk8、kafka2.8.2开发语言python开发流程数据上传(hdfs)->数据分析(spark)->数据写kafka(python)
- Pyspark中的int
闯闯桑
pythonsparkpandas大数据
在PySpark中,整数类型(int)与Python或Pandas中的int有所不同,因为它基于SparkSQL的数据类型系统。以下是PySpark中整数类型的详细说明:1.PySpark的整数类型PySpark主要使用IntegerType(32位)和LongType(64位)表示整数,对应SQL中的INT和BIGINT:PySpark类型SQL类型位数取值范围占用存储IntegerTypeIN
- pyspark底层浅析
lo_single
Sparksparkpython
pyspark底层浅析pyspark简介pyspark是Spark官方提供的API接口,同时pyspark也是Spark中的一个程序。在terminal中输入pyspark指令,可以打开python的shell,同时其中默认初始化了SparkConf和SparkContext在编写Spark应用的.py文件时,可以通过importpyspark引入该模块,并通过SparkConf对Spark的启动
- PySpark 使用pyarrow指定版本
SLUMBER_PARTY_
pyspark
背景说明在PySpark3.1.3环境中,当需要使用与集群环境不同版本的PyArrow(如1.0.0版本)时,可以通过以下方法实现,而无需更改集群环境配置完整操作说明去pyarrow·PyPI下载对应版本的whl文件后缀whl直接改成zip解压后有两个文件夹,分别是pyarrow和pyarrow-1.0.0.dist-info直接把那两个文件夹打包成pyarrow.zip因为pyarrow里不是单
- Spark入门指南:大数据处理的第一个Hello World程序
AI天才研究院
ChatGPTAI大模型应用入门实战与进阶spark大数据分布式ai
Spark入门指南:大数据处理的第一个HelloWorld程序关键词:Spark、大数据处理、RDD、WordCount、PySpark、分布式计算、HelloWorld程序摘要:本文以经典的WordCount程序为切入点,系统讲解ApacheSpark的核心概念、开发流程与实战技巧。通过从环境搭建到代码实现的全流程解析,帮助大数据初学者快速掌握Spark的基础操作,理解分布式计算的核心逻辑。文章
- pyspark==windows单机搭建
一个java开发
数据分析spark
下载安装JDK17,配置JAVA_HOME下载安装hadoop-3.3.5并完整替换bin目录,配置HADOOP_HOMEIndexof/hadoop/common/hadoop-3.3.5GitHub-cdarlint/winutils:winutils.exehadoop.dllandhdfs.dllbinariesforhadoopwindows下载spark配置SPARK_HOME安装py
- 大数据领域的数据工程:从理论到实践
AI天才研究院
ChatGPTAI大模型企业级应用开发实战大数据ai
大数据领域的数据工程:从理论到实践关键词:数据工程、大数据处理、ETL/ELT、数据湖、数据仓库、数据治理、云计算摘要:本文系统解析大数据领域的数据工程体系,从理论架构到实战落地展开深度探讨。首先构建数据工程核心概念框架,解析数据集成、存储、处理、治理的技术原理;其次通过Python和PySpark代码实现数据清洗、分布式处理等关键算法;结合真实项目案例演示数据管道搭建与优化;最后分析金融、电商等
- pyspark依赖环境设置
pypspark异常py49-protocol.Py433avaError:Anerroroccurredwhilecalling0117.sql.org.apache.spark.SparkException:Jobabortedduetostagefailure:Task®instage0.0failed4times,mostrecentfailure:Losttask0.3instage0.
- 使用 PySpark 从 Kafka 读取数据流并处理为表
Bug Spray
kafkalinq分布式
使用PySpark从Kafka读取数据流并处理为表下面是一个完整的指南,展示如何通过PySpark从Kafka消费数据流,并将其处理为可以执行SQL查询的表。1.环境准备确保已安装:ApacheSpark(包含SparkSQL和SparkStreaming)KafkaPySpark对应的Kafka连接器(通常已包含在Spark发行版中)2.完整代码示例frompyspark.sqlimportSp
- Hugging Face + Spark:打造高效的 NLP 大数据处理引擎(一)
在自然语言处理(NLP)领域,HuggingFace是不可或缺的处理库,而Spark则是大数据处理的必备工具。将两者的优势结合起来,可以实现高效的NLP大数据处理。以下是结合HuggingFace和Spark的两种方法,基于Spark&PySpark3.3.1版本进行探索。方法一:升级Spark版本至3.4及以上如果你愿意升级Spark版本到3.4或更高版本,那么结合HuggingFace和Spa
- linux下载pyspark并修改默认python版本
yishan_3
chrome前端
使用deadsnakesPPA(适用于旧版Ubuntu)如果官方仓库没有Python3.8,可通过第三方PPA安装。步骤1:添加PPA仓库bash复制下载sudoadd-apt-repositoryppa:deadsnakes/ppasudoaptupdate步骤2:安装Python3.8bash复制下载sudoaptinstallpython3.8设置Python3.8为默认版本(可选)如果需要
- 关于Spark Shell的使用
2301_78557870
spark大数据分布式
Spark带有交互式的Shell,可在SparkShell中直接编写Spark任务,然后提交到集群与分布式数据进行交互,并且可以立即查看输出结果。SparkShell提供了一种学习SparkAPI的简单方式,可以使用Scala或Python语言进行程序的编写。一、SparkShell简介SparkShell是Spark提供的交互式命令行工具,支持Scala(默认)和Python(PySparkSh
- RDD的自定义分区器-案例
依年南台
大数据
以下是一个更具体的RDD自定义分区器案例,展示如何根据业务需求实现自定义分区逻辑。案例:按用户地区进行数据分区假设我们有一个电商交易数据集,包含user_id(用户ID)和region(地区)字段。我们希望根据用户所在地区将数据分区,以便后续对每个地区的数据进行独立分析。实现步骤定义地区到分区的映射规则实现自定义分区器应用分区器并验证结果代码实现python运行frompysparkimportS
- 使用Pyspark读取CSV文件并将数据写入数据库(大数据)
雨中徜徉的思绪漫溢
数据库大数据
使用Pyspark读取CSV文件并将数据写入数据库(大数据)近年来,随着大数据技术的快速发展,大数据处理和分析已经成为许多企业和组织的重要任务之一。Pyspark作为ApacheSpark的PythonAPI,为我们提供了强大的工具来处理和分析大规模数据集。在本文中,我们将学习如何使用Pyspark读取CSV文件,并将数据写入数据库。首先,我们需要安装和配置Pyspark。请确保你已经安装了Jav
- Spark安装
姬激薄
spark
一、本地环境安装(单机模式)适合开发和测试,支持Windows、Linux、macOS。1.前置条件Java:Java8或更高版本(建议OpenJDK11+)。bash#检查Java版本java-versionPython(可选):PySpark需要Python3.6+。Scala(可选):若使用ScalaAPI,需安装Scala2.12/2.13。2.下载与安装下载Spark:从ApacheSp
- 【小贪】程序员必备:Shell、Git、Vim常用命令
贪钱算法还我头发
小小宝典gitvim编辑器shellsshlinux
近期致力于总结科研或者工作中用到的主要技术栈,从技术原理到常用语法,这次查缺补漏当作我的小百科。主要技术包括:✅数据库常用:MySQL,HiveSQL,SparkSQL✅大数据处理常用:Pyspark,Pandas⚪图像处理常用:OpenCV,matplotlib⚪机器学习常用:SciPy,Sklearn⚪深度学习常用:Pytorch,numpy⚪常用数据结构语法糖:itertools,colle
- pyspark on yarn 配置
强强0007
pysparkhadoop大数据分布式
1yarn模式出错pysparkonyarn在pycharm上执行出现以下问题:解决方案:在程序最前面添加如下程序importosos.environ["HADOOP_CONF_DIR"]="/opt/module/hadoop-3.1.3/etc/hadoop"2yarn模式配置2.1SparkSessionfrompyspark.sqlimportSparkSessionimportos
- RDD有哪几种创建方式
痕517
开发语言
RDD(弹性分布式数据集)有以下几种常见的创建方式:###从集合创建通过`parallelize()`方法将本地集合转换为RDD。这种方式适合在测试或处理小规模数据时使用,它能将本地的Python列表、Java数组等集合数据并行化到集群上。-**Python示例**:```pythonfrompysparkimportSparkContext#创建SparkContext对象sc=SparkCon
- scala连接mongodb_Spark教程(二)Spark连接MongoDB
weixin_39688035
scala连接mongodb
如何导入数据数据可能有各种格式,虽然常见的是HDFS,但是因为在Python爬虫中数据库用的比较多的是MongoDB,所以这里会重点说说如何用spark导入MongoDB中的数据。当然,首先你需要在自己电脑上安装spark环境,简单说下,在这里下载spark,同时需要配置好JAVA,Scala环境。这里建议使用Jupyternotebook,会比较方便,在环境变量中这样设置PYSPARK_DRIV
- 大数据毕业设计PySpark+Hadoop航班延误预测系统 航班可视化
QQ21503882
javaweb大数据课程设计hadoop
1.选题背景和意义(1)选题背景在旅行规划中,机票价格一直是旅客关注的重点。机票价格的波动不仅受季节、航线、航空公司等因素的影响,还受到市场供求关系、经济形势等因素的影响。因此,通过对机票价格进行预测分析,可以帮助旅客选择更合适的出行时间和机票购买策略,从而节省旅行成本。(2)意义提高乘客购票决策:基于Hadoop的飞机票价格预测能够提供乘客准确的价格预测信息,帮助他们选择合适的购票时间和最优的价
- Spark应用部署模式实例
qrh_yogurt
spark大数据分布式
Local模式新启动一个终端SparkSubmit#pyspark命令启动的进程,实际上就是启动了一个Spark应用程序SparkStandalone模式讲解:6321SecondaryNameNode#hadoop中HDFS第二数据存储节点,负责定期合并fsimage和editslog文件7475Jps6132DataNode#hadoop中HDFS的数据存储节点,负责存储实际的数据块,并响应来
- spark graphx自用学习笔记及pyspark项目实战(基于GraphX的航班飞行网图分析)
GDUT-orzzzzzz
学习笔记sparkpython大数据
这里写自定义目录标题0.前言1.概念1.1图计算的优势1.2图存储格式1.3GraphX存储模式1.4普通概念2.图的构建(待补充)2.1构建图的方法2.2构建图的过程3.图的操作4.算法5.实战5.1项目要求5.2环境5.3安装5.4代码5.5最终结果参考链接0.前言本篇博客自用,部分内容只包含概念,并且博主本身有一定spark和图论基础,部分模糊的地方,可自行查询。1.概念1.1图计算的优势基
- 在Azure Databricks中实现缓慢变化维度(SCD)的三种类型
weixin_30777913
数据仓库pythonsparkazure云计算
在AzureDatabricks中使用PySpark实现缓慢变化维度(SCD)的三种核心类型,需结合SparkSQL和DataFrameAPI的特性,并利用DeltaLake的事务支持。以下是具体设计与实现步骤,以及测试用例:通过以下步骤,可在AzureDatabricks中高效实现SCD逻辑,确保数据历史可追溯且符合业务需求。类型1:覆盖旧值(OverwriteOldValue)设计要点直接更新
- 跨领域大数据抓取与融合:Python爬虫实战指南
Python爬虫项目
2025年爬虫实战项目大数据python爬虫人工智能开发语言easyui
目录引言跨领域大数据抓取与融合的背景与意义技术选型与工具介绍Python爬虫框架:Scrapy、BeautifulSoup、Selenium数据处理与存储:Pandas、NumPy、MongoDB数据融合与分析:PySpark、TensorFlow实战项目:跨领域数据抓取与融合项目概述数据抓取抓取电商数据抓取社交媒体数据抓取新闻数据数据清洗与预处理数据融合与分析代码实现与详细解析电商数据抓取代码社
- PySpark数据透视表操作指南
闯闯桑
大数据sparkpython
在PySpark中,可以使用pivot()方法实现类似Excel数据透视表的功能。以下是详细操作步骤和示例:1.基本语法df.groupBy([行维度列])\.pivot([列维度列])\.agg([聚合函数])\.fillna(0)#可选,填充空值2.示例数据假设有以下DataFrame(sales_df):+-------+----------+------+-------+|region|p
- 在AWS Glue中实现缓慢变化维度(SCD)的三种类型
weixin_30777913
awsetlsql开发语言数据仓库
根据缓慢变化维度(SCD)的三种核心类型(类型1、类型2、类型3),以下是基于AWSGlue的实现设计、步骤及测试用例:一、AWSGlue实现SCD的设计与步骤1.SCD类型1(覆盖旧值)设计目标:直接更新目标表中的记录,不保留历史数据。技术选型:使用AWSGlueETL作业(PySpark)目标存储:S3(Parquet格式)或AmazonRedshift数据比对方式:基于业务键(如custom
- java线程Thread和Runnable区别和联系
zx_code
javajvmthread多线程Runnable
我们都晓得java实现线程2种方式,一个是继承Thread,另一个是实现Runnable。
模拟窗口买票,第一例子继承thread,代码如下
package thread;
public class ThreadTest {
public static void main(String[] args) {
Thread1 t1 = new Thread1(
- 【转】JSON与XML的区别比较
丁_新
jsonxml
1.定义介绍
(1).XML定义
扩展标记语言 (Extensible Markup Language, XML) ,用于标记电子文件使其具有结构性的标记语言,可以用来标记数据、定义数据类型,是一种允许用户对自己的标记语言进行定义的源语言。 XML使用DTD(document type definition)文档类型定义来组织数据;格式统一,跨平台和语言,早已成为业界公认的标准。
XML是标
- c++ 实现五种基础的排序算法
CrazyMizzz
C++c算法
#include<iostream>
using namespace std;
//辅助函数,交换两数之值
template<class T>
void mySwap(T &x, T &y){
T temp = x;
x = y;
y = temp;
}
const int size = 10;
//一、用直接插入排
- 我的软件
麦田的设计者
我的软件音乐类娱乐放松
这是我写的一款app软件,耗时三个月,是一个根据央视节目开门大吉改变的,提供音调,猜歌曲名。1、手机拥有者在android手机市场下载本APP,同意权限,安装到手机上。2、游客初次进入时会有引导页面提醒用户注册。(同时软件自动播放背景音乐)。3、用户登录到主页后,会有五个模块。a、点击不胫而走,用户得到开门大吉首页部分新闻,点击进入有新闻详情。b、
- linux awk命令详解
被触发
linux awk
awk是行处理器: 相比较屏幕处理的优点,在处理庞大文件时不会出现内存溢出或是处理缓慢的问题,通常用来格式化文本信息
awk处理过程: 依次对每一行进行处理,然后输出
awk命令形式:
awk [-F|-f|-v] ‘BEGIN{} //{command1; command2} END{}’ file
[-F|-f|-v]大参数,-F指定分隔符,-f调用脚本,-v定义变量 var=val
- 各种语言比较
_wy_
编程语言
Java Ruby PHP 擅长领域
- oracle 中数据类型为clob的编辑
知了ing
oracle clob
public void updateKpiStatus(String kpiStatus,String taskId){
Connection dbc=null;
Statement stmt=null;
PreparedStatement ps=null;
try {
dbc = new DBConn().getNewConnection();
//stmt = db
- 分布式服务框架 Zookeeper -- 管理分布式环境中的数据
矮蛋蛋
zookeeper
原文地址:
http://www.ibm.com/developerworks/cn/opensource/os-cn-zookeeper/
安装和配置详解
本文介绍的 Zookeeper 是以 3.2.2 这个稳定版本为基础,最新的版本可以通过官网 http://hadoop.apache.org/zookeeper/来获取,Zookeeper 的安装非常简单,下面将从单机模式和集群模式两
- tomcat数据源
alafqq
tomcat
数据库
JNDI(Java Naming and Directory Interface,Java命名和目录接口)是一组在Java应用中访问命名和目录服务的API。
没有使用JNDI时我用要这样连接数据库:
03. Class.forName("com.mysql.jdbc.Driver");
04. conn
- 遍历的方法
百合不是茶
遍历
遍历
在java的泛
- linux查看硬件信息的命令
bijian1013
linux
linux查看硬件信息的命令
一.查看CPU:
cat /proc/cpuinfo
二.查看内存:
free
三.查看硬盘:
df
linux下查看硬件信息
1、lspci 列出所有PCI 设备;
lspci - list all PCI devices:列出机器中的PCI设备(声卡、显卡、Modem、网卡、USB、主板集成设备也能
- java常见的ClassNotFoundException
bijian1013
java
1.java.lang.ClassNotFoundException: org.apache.commons.logging.LogFactory 添加包common-logging.jar2.java.lang.ClassNotFoundException: javax.transaction.Synchronization
- 【Gson五】日期对象的序列化和反序列化
bit1129
反序列化
对日期类型的数据进行序列化和反序列化时,需要考虑如下问题:
1. 序列化时,Date对象序列化的字符串日期格式如何
2. 反序列化时,把日期字符串序列化为Date对象,也需要考虑日期格式问题
3. Date A -> str -> Date B,A和B对象是否equals
默认序列化和反序列化
import com
- 【Spark八十六】Spark Streaming之DStream vs. InputDStream
bit1129
Stream
1. DStream的类说明文档:
/**
* A Discretized Stream (DStream), the basic abstraction in Spark Streaming, is a continuous
* sequence of RDDs (of the same type) representing a continuous st
- 通过nginx获取header信息
ronin47
nginx header
1. 提取整个的Cookies内容到一个变量,然后可以在需要时引用,比如记录到日志里面,
if ( $http_cookie ~* "(.*)$") {
set $all_cookie $1;
}
变量$all_cookie就获得了cookie的值,可以用于运算了
- java-65.输入数字n,按顺序输出从1最大的n位10进制数。比如输入3,则输出1、2、3一直到最大的3位数即999
bylijinnan
java
参考了网上的http://blog.csdn.net/peasking_dd/article/details/6342984
写了个java版的:
public class Print_1_To_NDigit {
/**
* Q65.输入数字n,按顺序输出从1最大的n位10进制数。比如输入3,则输出1、2、3一直到最大的3位数即999
* 1.使用字符串
- Netty源码学习-ReplayingDecoder
bylijinnan
javanetty
ReplayingDecoder是FrameDecoder的子类,不熟悉FrameDecoder的,可以先看看
http://bylijinnan.iteye.com/blog/1982618
API说,ReplayingDecoder简化了操作,比如:
FrameDecoder在decode时,需要判断数据是否接收完全:
public class IntegerH
- js特殊字符过滤
cngolon
js特殊字符js特殊字符过滤
1.js中用正则表达式 过滤特殊字符, 校验所有输入域是否含有特殊符号function stripscript(s) { var pattern = new RegExp("[`~!@#$^&*()=|{}':;',\\[\\].<>/?~!@#¥……&*()——|{}【】‘;:”“'。,、?]"
- hibernate使用sql查询
ctrain
Hibernate
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import org.hibernate.Hibernate;
import org.hibernate.SQLQuery;
import org.hibernate.Session;
import org.hibernate.Transa
- linux shell脚本中切换用户执行命令方法
daizj
linuxshell命令切换用户
经常在写shell脚本时,会碰到要以另外一个用户来执行相关命令,其方法简单记下:
1、执行单个命令:su - user -c "command"
如:下面命令是以test用户在/data目录下创建test123目录
[root@slave19 /data]# su - test -c "mkdir /data/test123" 
- 好的代码里只要一个 return 语句
dcj3sjt126com
return
别再这样写了:public boolean foo() { if (true) { return true; } else { return false;
- Android动画效果学习
dcj3sjt126com
android
1、透明动画效果
方法一:代码实现
public View onCreateView(LayoutInflater inflater, ViewGroup container, Bundle savedInstanceState)
{
View rootView = inflater.inflate(R.layout.fragment_main, container, fals
- linux复习笔记之bash shell (4)管道命令
eksliang
linux管道命令汇总linux管道命令linux常用管道命令
转载请出自出处:
http://eksliang.iteye.com/blog/2105461
bash命令执行的完毕以后,通常这个命令都会有返回结果,怎么对这个返回的结果做一些操作呢?那就得用管道命令‘|’。
上面那段话,简单说了下管道命令的作用,那什么事管道命令呢?
答:非常的经典的一句话,记住了,何为管
- Android系统中自定义按键的短按、双击、长按事件
gqdy365
android
在项目中碰到这样的问题:
由于系统中的按键在底层做了重新定义或者新增了按键,此时需要在APP层对按键事件(keyevent)做分解处理,模拟Android系统做法,把keyevent分解成:
1、单击事件:就是普通key的单击;
2、双击事件:500ms内同一按键单击两次;
3、长按事件:同一按键长按超过1000ms(系统中长按事件为500ms);
4、组合按键:两个以上按键同时按住;
- asp.net获取站点根目录下子目录的名称
hvt
.netC#asp.nethovertreeWeb Forms
使用Visual Studio建立一个.aspx文件(Web Forms),例如hovertree.aspx,在页面上加入一个ListBox代码如下:
<asp:ListBox runat="server" ID="lbKeleyiFolder" />
那么在页面上显示根目录子文件夹的代码如下:
string[] m_sub
- Eclipse程序员要掌握的常用快捷键
justjavac
javaeclipse快捷键ide
判断一个人的编程水平,就看他用键盘多,还是鼠标多。用键盘一是为了输入代码(当然了,也包括注释),再有就是熟练使用快捷键。 曾有人在豆瓣评
《卓有成效的程序员》:“人有多大懒,才有多大闲”。之前我整理了一个
程序员图书列表,目的也就是通过读书,让程序员变懒。 写道 程序员作为特殊的群体,有的人可以这么懒,懒到事情都交给机器去做,而有的人又可
- c++编程随记
lx.asymmetric
C++笔记
为了字体更好看,改变了格式……
&&运算符:
#include<iostream>
using namespace std;
int main(){
int a=-1,b=4,k;
k=(++a<0)&&!(b--
- linux标准IO缓冲机制研究
音频数据
linux
一、什么是缓存I/O(Buffered I/O)缓存I/O又被称作标准I/O,大多数文件系统默认I/O操作都是缓存I/O。在Linux的缓存I/O机制中,操作系统会将I/O的数据缓存在文件系统的页缓存(page cache)中,也就是说,数据会先被拷贝到操作系统内核的缓冲区中,然后才会从操作系统内核的缓冲区拷贝到应用程序的地址空间。1.缓存I/O有以下优点:A.缓存I/O使用了操作系统内核缓冲区,
- 随想 生活
暗黑小菠萝
生活
其实账户之前就申请了,但是决定要自己更新一些东西看也是最近。从毕业到现在已经一年了。没有进步是假的,但是有多大的进步可能只有我自己知道。
毕业的时候班里12个女生,真正最后做到软件开发的只要两个包括我,PS:我不是说测试不好。当时因为考研完全放弃找工作,考研失败,我想这只是我的借口。那个时候才想到为什么大学的时候不能好好的学习技术,增强自己的实战能力,以至于后来找工作比较费劲。我
- 我认为POJO是一个错误的概念
windshome
javaPOJO编程J2EE设计
这篇内容其实没有经过太多的深思熟虑,只是个人一时的感觉。从个人风格上来讲,我倾向简单质朴的设计开发理念;从方法论上,我更加倾向自顶向下的设计;从做事情的目标上来看,我追求质量优先,更愿意使用较为保守和稳妥的理念和方法。
&