机器学习作业8--特征选择 : https://www.cnblogs.com/dongxinghui/p/13125729.html
1.手写数字数据集
- from sklearn.datasets import load_digits
- digits = load_digits()
from sklearn.datasets import load_digits
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import OneHotEncoder
digits = load_digits()
X_data = digits.data.astype(np.float32)
Y_data = digits.target.astype(np.float32).reshape(-1,1)
2.图片数据预处理
- x:归一化MinMaxScaler()
- y:独热编码OneHotEncoder()或to_categorical
- 训练集测试集划分
- 张量结构
scaler = MinMaxScaler() X_data = scaler.fit_transform(X_data) print('MinMaxScaler_trans_X_data:') print(X_data)
Y = OneHotEncoder().fit_transform(Y_data).todense() print("one-hot_Y:") print(Y)
3.设计卷积神经网络结构
- 绘制模型结构图,并说明设计依据
from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D # 建立模型 model = Sequential() ks = (3, 3) # 卷积核的大小 input_shape = X_train.shape[1:] # 一层卷积,padding='same',tensorflow会对输入自动补0 model.add(Conv2D(filters=16, kernel_size=ks, padding='same', input_shape=input_shape,activation='relu')) # 第一层输入数据的shape要指定外,其他层的数据的shape框架会自动推导 # 池化层1 model.add(MaxPool2D(pool_size=(2, 2))) # 防止过拟合,随机丢掉连接 model.add(Dropout(0.25)) # 二层卷积 model.add(Conv2D(filters=32, kernel_size=ks, padding='same', activation='relu')) # 池化层2 model.add(MaxPool2D(pool_size=(2, 2))) model.add(Dropout(0.25)) # 三层卷积 model.add(Conv2D(filters=64, kernel_size=ks, padding='same', activation='relu')) # 四层卷积 model.add(Conv2D(filters=128, kernel_size=ks, padding='same', activation='relu')) # 池化层3 model.add(MaxPool2D(pool_size=(2, 2))) model.add(Dropout(0.25)) # 平坦层 model.add(Flatten()) # 全连接层 model.add(Dense(128, activation='relu')) model.add(Dropout(0.25)) # 激活函数softmax model.add(Dense(10, activation='softmax')) model.summary()
4.模型训练
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) train_history = model.fit(x=X_train, y=Y_train, validation_split=0.2, batch_size=300, epochs=10, verbose=2) score = model.evaluate(X_test, Y_test) score import matplotlib.pyplot as plt def show_train_history(train_history, train, validation): plt.plot(train_history.history[train]) plt.plot(train_history.history[validation]) plt.title('Train History') plt.ylabel('train') plt.xlabel('epoch') plt.legend(['train', 'validation'], loc='upper left') plt.show() p = plt.figure(figsize=(15, 15)) a1 = p.add_subplot(2, 1, 1) show_train_history(train_history, 'accuracy', 'val_accuracy') plt.title("准确率") a2 = p.add_subplot(2, 1, 2) show_train_history(train_history, 'loss', 'val_loss') plt.title("损失率") plt.show()
5.模型评价
- model.evaluate()
- 交叉表与交叉矩阵
- pandas.crosstab
- seaborn.heatmap
import seaborn as sns score = model.evaluate(X_test, Y_test) print('score:', score) # 预测值 y_pred = model.predict_classes(X_test) print('y_pred:', y_pred[:10]) # 交叉表与交叉矩阵 y_test1 = np.argmax(Y_test, axis=1).reshape(-1) y_true = np.array(y_test1)[0] # 交叉表查看预测数据与原数据对比 pd.crosstab(y_true, y_pred, rownames=['true'], colnames=['predict']) # 交叉矩阵 y_test1 = y_test1.tolist()[0] a = pd.crosstab(np.array(y_test1), y_pred, rownames=['Lables'], colnames=['Predict']) df = pd.DataFrame(a) sns.heatmap(df, annot=True, cmap="Reds", linewidths=0.2, linecolor='G') plt.show()