- Python 实现基于SDAE堆叠去噪自编码器的数据分类预测的详细项目实例(含模型描述及示例代码)
nantangyuxi
Pythonpython分类开发语言人工智能大数据深度学习机器学习
目录Python实现基于SDAE堆叠去噪自编码器的数据分类预测的详细项目实例...1项目背景介绍...2项目目标与意义...2目标...2意义...3项目挑战及解决方案...3噪声数据处理...3特征提取与降维...3模型过拟合问题...4训练时间与计算资源...4数据不平衡问题...4项目特点与创新...4去噪自编码器的堆叠应用...4多层次特征学习...4噪声抑制机制...4模型自动优化...
- 自编码器表征学习:重构误差与隐空间拓扑结构的深度解析
码字的字节
机器学习自编码器重构误差隐空间
自编码器基础与工作原理自编码器(Autoencoder)作为深度学习领域的重要无监督学习模型,其核心思想是通过模拟人类认知过程中的"压缩-解压"机制实现数据的表征学习。这种由GeoffreyHinton团队在2006年复兴的神经网络结构,本质上是一个试图通过编码-解码过程来复制其输入的系统,却在实现这一看似简单目标的过程中,意外地获得了强大的特征提取能力。基本架构与工作流程典型自编码器由对称的两部
- Python机器学习与深度学习:决策树、随机森林、XGBoost与LightGBM、迁移学习、循环神经网络、长短时记忆网络、时间卷积网络、自编码器、生成对抗网络、YOLO目标检测等
WangYan2022
机器学习/深度学习Python机器学习深度学习随机森林迁移学习
融合最新技术动态与实战经验,旨在系统提升以下能力:①掌握ChatGPT、DeepSeek等大语言模型在代码生成、模型调试、实验设计、论文撰写等方面的实际应用技巧②深入理解深度学习与经典机器学习算法的关联与差异,掌握其理论基础③熟练运用PyTorch实现各类深度学习模型,包括迁移学习、循环神经网络(RNN)、长短时记忆网络(LSTM)、时间卷积网络(TCN)、自编码器、生成对抗网络(GAN)、YOL
- 深入解析 SAE 训练输出文件:结构与意义
阿正的梦工坊
LLM语言模型人工智能自然语言处理
深入解析SAE训练输出文件:结构与意义在利用SAELens框架进行稀疏自编码器(SparseAutoencoder,SAE)训练时,训练完成后会生成一组关键文件,这些文件记录了模型的权重、状态以及相关信息。本文将详细解析路径SAELens/tutorials/checkpoints/n78ngo5e/final_122880000下生成的四个文件:activations_store_state.s
- 【推荐算法课程二】推荐算法介绍-深度学习算法
盒子6910
运维视角下的广告业务算法推荐算法深度学习运维开发运维人工智能
三、深度学习在推荐系统中的应用3.1深度学习推荐模型的演化关系图3.2AutoRec——单隐层神经网络推荐模型3.2.1AutoRec模型的基本原理AutoRec模型是一个标准的自编码器,它的基本原理是利用协同过滤中的共现矩阵,完成物品向量或者用户向量的自编码。再利用自编码的结果得到用户对物品的预估评分,进而进行推荐排序。什么是自编码器?自编码器是指能够完成数据“自编码”的模型。无论是图像、音频,
- 深入解析VAE:从理论到PyTorch实战,一步步构建你的AI“艺术家”
电脑能手
人工智能深度学习python
摘要:你是否好奇AI如何“凭空”创造出从未见过的人脸或画作?变分自编码器(VAE)就是解开这一谜题的关键钥匙之一。本文将带你从零开始,深入浅出地剖析VAE的迷人世界。我们将用生动的比喻解释其核心思想,拆解其背后的数学原理(KL散度与重参数技巧),并最终用PyTorch代码手把手地构建、训练和可视化一个完整的VAE模型。无论你是初学者还是有一定经验的开发者,相信这篇文章都能让你对生成模型有一个全新的
- Dimba: Transformer-Mamba Diffusion Models————3 Methodology
图解图片中的每个模块详解1.文本输入(Text)描述:输入的文本描述了一个具有具体特征的场景。功能:提供关于要生成图像的详细信息。2.T5模型(TexttoFeature)描述:使用T5模型将文本转换为特征向量。功能:提取文本中的语义信息,为后续的图像生成提供条件。3.图像输入(Image)描述:输入图像通过变分自编码器(VAE)编码器处理。功能:将图像转换为潜在表示,用于添加噪声并进行扩散过程。
- Latent World Model 架构实战:具身智能中的隐空间建模与状态压缩
观熵
具身智能(EmbodiedAI)架构人工智能具身智能
LatentWorldModel架构实战:具身智能中的隐空间建模与状态压缩关键词具身智能、LatentWorldModel、状态建模、变分自编码器、感知压缩、动态预测、多模态对齐、认知建模、世界模型、状态表示学习摘要在具身智能系统中,世界模型(WorldModel)构建是认知能力的核心,而其中的“隐空间建模与状态压缩”技术决定了智能体对环境的理解深度与动作决策的效率。本文基于2025年最新开源项目
- 生成对抗网络(GAN)与深度生成模型实战
软考和人工智能学堂
人工智能Python开发经验#DeepSeek快速入门开发语言
1.生成模型基础与GAN原理1.1生成模型概览生成模型是深度学习中的重要分支,主要分为以下几类:变分自编码器(VAE):基于概率图模型的生成方法生成对抗网络(GAN):通过对抗训练学习数据分布自回归模型:PixelCNN、WaveNet等流模型(Flow-basedModels):基于可逆变换的精确密度估计扩散模型(DiffusionModels):最新兴起的生成方法1.2GAN核心思想GAN由生
- SAE层、BPNN层结合的深度学习模型
sbc-study
深度学习人工智能机器学习
EarlyFaultDetectionofMachineToolsBasedonDeepLearningandDynamicIdentificationBoLuo,HaotingWang,HongqiLiu,BinLi,andFangyuPengIEEETRANSACTIONSONINDUSTRIALELECTRONICS,VOL.66,NO.1,JANUARY2019一SAE层(栈式自编码器层-
- AI学习指南深度学习篇-变分自编码器的应用与扩展
俞兆鹏
AI学习指南ai
AI学习指南深度学习篇-变分自编码器的应用与扩展目录引言变分自编码器概述变分自编码器在图像生成中的应用变分自编码器在图像重建中的应用
- 变分自编码器的扩展模型:条件VAE
AI天才研究院
AIAgent应用开发LLM大模型落地实战指南AI大模型应用入门实战与进阶计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
变分自编码器的扩展模型:条件VAE作者:禅与计算机程序设计艺术1.背景介绍近年来,变分自编码器(VariationalAutoencoder,VAE)作为一种强大的生成式模型,在图像生成、文本生成等任务中展现出了卓越的性能。VAE通过学习数据分布的潜在表示,能够生成与训练数据相似的新样本。然而,标准的VAE模型无法对生成的内容进行控制,这限制了它在实际应用中的灵活性。为了解决这一问题,研究人员提出
- 【深度学习】自编码器:数据压缩与特征学习的神经网络引擎
瑶光守护者
深度学习学习神经网络人工智能机器学习强化学习
作者选择了由IanGoodfellow、YoshuaBengio和AaronCourville三位大佬撰写的《DeepLearning》(人工智能领域的经典教程,深度学习领域研究生必读教材),开始深度学习领域学习,深入全面的理解深度学习的理论知识。之前的文章参考下面的链接:【深度学习】线性因子模型:数据降维与结构解析的数学透镜【学习笔记】强化学习:实用方法论【学习笔记】序列建模:递归神经网络(RN
- 生成式AI模型学习笔记
Humbunklung
机器学习人工智能学习笔记机器学习深度学习
文章目录生成式AI模型1.定义2.生成式模型与判别式模型3.深度生成式模型的类型3.1能量模型3.2变分自编码3.2.1变分自编码器(VariationalAutoencoder,VAE)简介3.2.2代码示例(以PyTorch为例)3.3生成对抗网络3.4流模型3.4.1流模型简介3.4.2NICE:开创性流模型3.4.3流模型与VAE、GAN的区别3.5自回归模型3.5.1自回归模型简介3.5
- 从 “被动拦截” 到 “智能预判”:下一代防火墙的五大核心技术突破
柏睿网络
人工智能
传统防火墙如同仅能按"剧本"执行的机械门卫,面对复杂多变的网络威胁时,常因规则滞后、检测粗放而陷入被动。下一代防火墙(NGFW)通过五大核心技术突破,构建起以"智能预判"为核心的主动防御体系,实现从"事后响应"到"事前阻断"的范式革命。一、AI驱动的威胁检测引擎:从规则匹配到行为建模技术突破机器学习驱动的异常检测抛弃传统的"特征码匹配"模式,采用无监督学习算法(如孤立森林、VAE变分自编码器)构建
- 入选 ICML 2025,清华/人大/字节提出首个跨分子种类统一生成框架 UniMoMo,实现多类型药物分子设计
hyperai
清华大学刘洋老师组、人民大学高瓴人工智能学院黄文炳老师组、字节跳动AI制药团队共同提出了一种跨分子种类统一生成框架UniMoMo。该框架基于分子片段(block)对不同种类的分子进行统一表示,使用变分自编码器对每个block的全原子构象进行压缩,并在压缩后的隐空间进行几何扩散建模(diffusion),从而实现对同一靶点不同结合分子种类(小分子、多肽、抗体)的设计。UniMoMo在多类分子任务基准
- 【课堂笔记】生成对抗网络 Generative Adversarial Network(GAN)
zyq~
机器学习笔记生成对抗网络人工智能机器学习概率论GAN
文章目录问题背景原理更新过程判别器生成器问题背景 一方面,许多机器学习任务需要大量标注数据,但真实数据可能稀缺或昂贵(如医学影像、稀有事件数据)。如何在少量数据中达到一个很好的训练效果是一个很重要的问题。 另一方面,传统生成模型(如变分自编码器VAE)生成的样本往往模糊或缺乏多样性,难以捕捉真实数据的复杂分布(如高分辨率图像、复杂文本等)。 生成式对抗网络(GAN)提出了用生成器(Gener
- python学习day21
一叶知秋秋
python学习笔记学习
知识点回顾:1.LDA线性判别2.PCA主成分分析3.t-sne降维数据如前几期无监督降维定义:这类算法在降维过程中不使用任何关于数据样本的标签信息输入:只有特征矩阵X。目标:保留数据中尽可能多的方差(如PCA)。保留数据的局部或全局流形结构(如LLE,Isomap,t-SNE,UMAP)。找到能够有效重构原始数据的紧凑表示(如Autoencoder)。找到统计上独立的成分(如ICA)。典型算法:
- 一文解析13大神经网络算法模型架构
攻城狮7号
AI前沿技术要闻深度学习神经网络人工智能机器学习
目录一、引言:神经网络的演进脉络二、基础架构:深度学习的基石2.1人工神经网络(ANN)2.2深度神经网络(DNN)三、专项任务架构:领域定制化突破3.1卷积神经网络(CNN)3.2循环神经网络(RNN)3.3图神经网络(GNN)四、生成模型:从数据到创造4.1生成对抗网络(GAN)4.2变分自编码器(VAE)4.3扩散模型(DiffusionModels)五、现代架构:大模型的核心引擎5.1Tr
- 【图像生成大模型】Wan2.1:下一代开源大规模视频生成模型
白熊188
图像大模型开源音视频人工智能计算机视觉文生图
Wan2.1:下一代开源大规模视频生成模型引言Wan2.1项目概述核心技术1.3D变分自编码器(Wan-VAE)2.视频扩散Transformer(VideoDiffusionDiT)3.数据处理与清洗项目运行方式与执行步骤1.环境准备2.安装依赖3.模型下载4.文本到视频生成单GPU推理多GPU推理5.图像到视频生成6.首尾帧到视频生成执行报错与问题解决1.显存不足2.环境依赖问题3.模型下载问
- 生成式人工智能:创意产业的变革力量
Blossom.118
分布式系统与高性能计算领域人工智能去中心化区块链交互web3机器学习目标检测
引言随着人工智能技术的飞速发展,生成式人工智能(GenerativeAI)逐渐成为科技领域的热门话题。生成式人工智能通过深度学习算法,能够生成文本、图像、音乐、视频等多种内容,为创意产业带来了前所未有的机遇。本文将探讨生成式人工智能在创意产业中的应用、技术原理以及未来的发展趋势。一、生成式人工智能简介(一)定义与原理生成式人工智能是一种利用深度学习算法(如生成对抗网络GAN、变分自编码器VAE和T
- AI大模型全景干货:分类、特点、应用、数据与学习指南
程序员辣条
人工智能大模型训练大模型AI大模型程序员大模型入门大模型教程
随着人工智能技术的飞速发展,AI大模型在众多领域取得了显著成果。本文将介绍AI大模型的种类、特点、应用及其详细数据。一、AI大模型的分类1、按模型结构分类(1)深度神经网络(DNN):包括卷积神经网络(CNN)、循环神经网络(RNN)等。(2)生成对抗网络(GAN):通过对抗训练,使生成模型能够生成与真实数据分布相近的数据。(3)变分自编码器(VAE):通过编码器和解码器实现对数据的压缩和重建。2
- 【神经网络与深度学习】VAE 中的先验分布指的是什么
如果树上有叶子
神经网络与深度学习深度学习神经网络人工智能
VAE中的先验分布是什么?在变分自编码器(VAE)中,先验分布指的是对潜在空间中随机变量的概率分布假设。通常情况下,VAE设定潜在变量服从标准正态分布(N(0,I)),其中(0)代表均值为零的向量,(I)为单位协方差矩阵。选择标准正态分布作为先验分布的原因主要有以下几点:数学上的便利性:标准正态分布具有良好的数学性质,计算和推导更加简洁,便于模型的优化和训练。结构化的潜在空间:这种假设能够促使模型
- AI大模型干货 | AI大模型的分类、特点、应用、详细数据、如何学习大模型?
大模型RAG实战
人工智能学习AI大模型大模型LLMaiagi
随着人工智能技术的飞速发展,AI大模型在众多领域取得了显著成果。本文将介绍AI大模型的种类、特点、应用及其详细数据。一、AI大模型的分类1、按模型结构分类(1)深度神经网络(DNN):包括卷积神经网络(CNN)、循环神经网络(RNN)等。(2)生成对抗网络(GAN):通过对抗训练,使生成模型能够生成与真实数据分布相近的数据。(3)变分自编码器(VAE):通过编码器和解码器实现对数据的压缩和重建。2
- 《大规模电动汽车充换电设施可调能力聚合评估与预测》MATLAB实现计划
小彭律师
matlab机器学习开发语言
模型概述根据论文,我将复刻实现结合长短期记忆网络(LSTM)和条件变分自编码器(CVAE)的预测方法,用于电动汽车充换电设施可调能力的聚合评估与预测。实现步骤1.数据预处理导入充电数据(Charging_Data.csv)导入天气数据(Weather_Data.csv)导入电价数据(Time-of-use_Price.csv)数据清洗和特征提取将数据分割为训练集和测试集2.模型实现实现LSTM模型
- 深入浅出:AIGC条件生成模型架构解析
AI天才研究院
AIGC架构ai
深入浅出:AIGC条件生成模型架构解析关键词:AIGC、条件生成模型、生成对抗网络、变分自编码器、Transformer、扩散模型、多模态生成摘要:本文系统解析AIGC(人工智能生成内容)领域中条件生成模型的核心架构与技术原理。从基础概念出发,对比条件生成与无条件生成的本质区别,深入剖析条件GAN、条件VAE、基于Transformer的条件生成模型及扩散模型的架构设计与数学原理。通过Python
- Keras深度学习实战——自编码器详解
鱼弦
机器学习设计类系统深度学习keras人工智能
鱼弦:公众号【红尘灯塔】,CSDN博客专家、内容合伙人、新星导师、全栈领域优质创作者、51CTO(Top红人+专家博主)、github开源爱好者(go-zero源码二次开发、游戏后端架构https://github.com/Peakchen)Keras深度学习实战——自编码器详解简介自编码器(AutoEncoder)是一种无监督学习算法,它通过学习输入数据的潜在表示来实现数据降维和特征提取。自编码
- 【神经网络与深度学习】普通自编码器和变分自编码器的区别
如果树上有叶子
神经网络与深度学习深度学习神经网络人工智能自编码器变分自编码器
引言自编码器(Autoencoder,AE)和变分自编码器(VariationalAutoencoder,VAE)是深度学习中广泛应用的两类神经网络结构,主要用于数据的压缩、重构和生成。然而,二者在模型设计、训练目标和生成能力等方面存在显著区别。普通自编码器侧重于高效压缩数据并进行无损重构,而变分自编码器则通过潜在空间的概率分布,增强了模型的生成能力和泛化性能。本文将从多个角度探讨AE和VAE的不
- ACE-Step:扩散自编码文生音乐基座模型快速了解
Panesle
前沿文本生成音乐音频扩散模型大模型transformer
ACE-Step模型速读一、模型概述ACE-Step是一款由ACEStudio和StepFun开发的新型开源音乐生成基础模型。它通过整合基于扩散的生成方式、Sana的深度压缩自编码器(DCAE)以及轻量级线性变换器,在音乐生成速度、音乐连贯性和可控性等方面达到前所未有的高度,成功克服了现有方法的关键局限性。二、关键特性高效性:在生成速度上ACE-Step表现卓越,相比基于大型语言模型(LLM)的基
- 赢者通吃自编码器(WTA-AE)
wzg2016
参考:1.论文:winner-take-all-autoencoders.pdf2.代码:a.fullconnectWTA-AEb.Conv-WTA-AE简单理解:spatialsparsity:对卷积得到的feature-map-tensor(shape=[N,H,W,C]),沿每个channel,是一个H*W的张量,仅仅保留这个H*W的张量上的最大值,其余数值元素置零。lifetimespar
- apache ftpserver-CentOS config
gengzg
apache
<server xmlns="http://mina.apache.org/ftpserver/spring/v1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://mina.apache.o
- 优化MySQL数据库性能的八种方法
AILIKES
sqlmysql
1、选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的 性能,我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很
- JeeSite 企业信息化快速开发平台
Kai_Ge
JeeSite
JeeSite 企业信息化快速开发平台
平台简介
JeeSite是基于多个优秀的开源项目,高度整合封装而成的高效,高性能,强安全性的开源Java EE快速开发平台。
JeeSite本身是以Spring Framework为核心容器,Spring MVC为模型视图控制器,MyBatis为数据访问层, Apache Shiro为权限授权层,Ehcahe对常用数据进行缓存,Activit为工作流
- 通过Spring Mail Api发送邮件
120153216
邮件main
原文地址:http://www.open-open.com/lib/view/open1346857871615.html
使用Java Mail API来发送邮件也很容易实现,但是最近公司一个同事封装的邮件API实在让我无法接受,于是便打算改用Spring Mail API来发送邮件,顺便记录下这篇文章。 【Spring Mail API】
Spring Mail API都在org.spri
- Pysvn 程序员使用指南
2002wmj
SVN
源文件:http://ju.outofmemory.cn/entry/35762
这是一篇关于pysvn模块的指南.
完整和详细的API请参考 http://pysvn.tigris.org/docs/pysvn_prog_ref.html.
pysvn是操作Subversion版本控制的Python接口模块. 这个API接口可以管理一个工作副本, 查询档案库, 和同步两个.
该
- 在SQLSERVER中查找被阻塞和正在被阻塞的SQL
357029540
SQL Server
SELECT R.session_id AS BlockedSessionID ,
S.session_id AS BlockingSessionID ,
Q1.text AS Block
- Intent 常用的用法备忘
7454103
.netandroidGoogleBlogF#
Intent
应该算是Android中特有的东西。你可以在Intent中指定程序 要执行的动作(比如:view,edit,dial),以及程序执行到该动作时所需要的资料 。都指定好后,只要调用startActivity(),Android系统 会自动寻找最符合你指定要求的应用 程序,并执行该程序。
下面列出几种Intent 的用法
显示网页:
- Spring定时器时间配置
adminjun
spring时间配置定时器
红圈中的值由6个数字组成,中间用空格分隔。第一个数字表示定时任务执行时间的秒,第二个数字表示分钟,第三个数字表示小时,后面三个数字表示日,月,年,< xmlnamespace prefix ="o" ns ="urn:schemas-microsoft-com:office:office" />
测试的时候,由于是每天定时执行,所以后面三个数
- POJ 2421 Constructing Roads 最小生成树
aijuans
最小生成树
来源:http://poj.org/problem?id=2421
题意:还是给你n个点,然后求最小生成树。特殊之处在于有一些点之间已经连上了边。
思路:对于已经有边的点,特殊标记一下,加边的时候把这些边的权值赋值为0即可。这样就可以既保证这些边一定存在,又保证了所求的结果正确。
代码:
#include <iostream>
#include <cstdio>
- 重构笔记——提取方法(Extract Method)
ayaoxinchao
java重构提炼函数局部变量提取方法
提取方法(Extract Method)是最常用的重构手法之一。当看到一个方法过长或者方法很难让人理解其意图的时候,这时候就可以用提取方法这种重构手法。
下面是我学习这个重构手法的笔记:
提取方法看起来好像仅仅是将被提取方法中的一段代码,放到目标方法中。其实,当方法足够复杂的时候,提取方法也会变得复杂。当然,如果提取方法这种重构手法无法进行时,就可能需要选择其他
- 为UILabel添加点击事件
bewithme
UILabel
默认情况下UILabel是不支持点击事件的,网上查了查居然没有一个是完整的答案,现在我提供一个完整的代码。
UILabel *l = [[UILabel alloc] initWithFrame:CGRectMake(60, 0, listV.frame.size.width - 60, listV.frame.size.height)]
- NoSQL数据库之Redis数据库管理(PHP-REDIS实例)
bijian1013
redis数据库NoSQL
一.redis.php
<?php
//实例化
$redis = new Redis();
//连接服务器
$redis->connect("localhost");
//授权
$redis->auth("lamplijie");
//相关操
- SecureCRT使用备注
bingyingao
secureCRT每页行数
SecureCRT日志和卷屏行数设置
一、使用securecrt时,设置自动日志记录功能。
1、在C:\Program Files\SecureCRT\下新建一个文件夹(也就是你的CRT可执行文件的路径),命名为Logs;
2、点击Options -> Global Options -> Default Session -> Edite Default Sett
- 【Scala九】Scala核心三:泛型
bit1129
scala
泛型类
package spark.examples.scala.generics
class GenericClass[K, V](val k: K, val v: V) {
def print() {
println(k + "," + v)
}
}
object GenericClass {
def main(args: Arr
- 素数与音乐
bookjovi
素数数学haskell
由于一直在看haskell,不可避免的接触到了很多数学知识,其中数论最多,如素数,斐波那契数列等,很多在学生时代无法理解的数学现在似乎也能领悟到那么一点。
闲暇之余,从图书馆找了<<The music of primes>>和<<世界数学通史>>读了几遍。其中素数的音乐这本书与软件界熟知的&l
- Java-Collections Framework学习与总结-IdentityHashMap
BrokenDreams
Collections
这篇总结一下java.util.IdentityHashMap。从类名上可以猜到,这个类本质应该还是一个散列表,只是前面有Identity修饰,是一种特殊的HashMap。
简单的说,IdentityHashMap和HashM
- 读《研磨设计模式》-代码笔记-享元模式-Flyweight
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java
- PS人像润饰&调色教程集锦
cherishLC
PS
1、仿制图章沿轮廓润饰——柔化图像,凸显轮廓
http://www.howzhi.com/course/retouching/
新建一个透明图层,使用仿制图章不断Alt+鼠标左键选点,设置透明度为21%,大小为修饰区域的1/3左右(比如胳膊宽度的1/3),再沿纹理方向(比如胳膊方向)进行修饰。
所有修饰完成后,对该润饰图层添加噪声,噪声大小应该和
- 更新多个字段的UPDATE语句
crabdave
update
更新多个字段的UPDATE语句
update tableA a
set (a.v1, a.v2, a.v3, a.v4) = --使用括号确定更新的字段范围
- hive实例讲解实现in和not in子句
daizj
hivenot inin
本文转自:http://www.cnblogs.com/ggjucheng/archive/2013/01/03/2842855.html
当前hive不支持 in或not in 中包含查询子句的语法,所以只能通过left join实现。
假设有一个登陆表login(当天登陆记录,只有一个uid),和一个用户注册表regusers(当天注册用户,字段只有一个uid),这两个表都包含
- 一道24点的10+种非人类解法(2,3,10,10)
dsjt
算法
这是人类算24点的方法?!!!
事件缘由:今天晚上突然看到一条24点状态,当时惊为天人,这NM叫人啊?以下是那条状态
朱明西 : 24点,算2 3 10 10,我LX炮狗等面对四张牌痛不欲生,结果跑跑同学扫了一眼说,算出来了,2的10次方减10的3次方。。我草这是人类的算24点啊。。
然后么。。。我就在深夜很得瑟的问室友求室友算
刚出完题,文哥的暴走之旅开始了
5秒后
- 关于YII的菜单插件 CMenu和面包末breadcrumbs路径管理插件的一些使用问题
dcj3sjt126com
yiiframework
在使用 YIi的路径管理工具时,发现了一个问题。 <?php  
- 对象与关系之间的矛盾:“阻抗失配”效应[转]
come_for_dream
对象
概述
“阻抗失配”这一词组通常用来描述面向对象应用向传统的关系数据库(RDBMS)存放数据时所遇到的数据表述不一致问题。C++程序员已经被这个问题困扰了好多年,而现在的Java程序员和其它面向对象开发人员也对这个问题深感头痛。
“阻抗失配”产生的原因是因为对象模型与关系模型之间缺乏固有的亲合力。“阻抗失配”所带来的问题包括:类的层次关系必须绑定为关系模式(将对象
- 学习编程那点事
gcq511120594
编程互联网
一年前的夏天,我还在纠结要不要改行,要不要去学php?能学到真本事吗?改行能成功吗?太多的问题,我终于不顾一切,下定决心,辞去了工作,来到传说中的帝都。老师给的乘车方式还算有效,很顺利的就到了学校,赶巧了,正好学校搬到了新校区。先安顿了下来,过了个轻松的周末,第一次到帝都,逛逛吧!
接下来的周一,是我噩梦的开始,学习内容对我这个零基础的人来说,除了勉强完成老师布置的作业外,我已经没有时间和精力去
- Reverse Linked List II
hcx2013
list
Reverse a linked list from position m to n. Do it in-place and in one-pass.
For example:Given 1->2->3->4->5->NULL, m = 2 and n = 4,
return 
- Spring4.1新特性——页面自动化测试框架Spring MVC Test HtmlUnit简介
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Hadoop集群工具distcp
liyonghui160com
1. 环境描述
两个集群:rock 和 stone
rock无kerberos权限认证,stone有要求认证。
1. 从rock复制到stone,采用hdfs
Hadoop distcp -i hdfs://rock-nn:8020/user/cxz/input hdfs://stone-nn:8020/user/cxz/运行在rock端,即源端问题:报版本
- 一个备份MySQL数据库的简单Shell脚本
pda158
mysql脚本
主脚本(用于备份mysql数据库): 该Shell脚本可以自动备份
数据库。只要复制粘贴本脚本到文本编辑器中,输入数据库用户名、密码以及数据库名即可。我备份数据库使用的是mysqlump 命令。后面会对每行脚本命令进行说明。
1. 分别建立目录“backup”和“oldbackup” #mkdir /backup #mkdir /oldbackup
- 300个涵盖IT各方面的免费资源(中)——设计与编码篇
shoothao
IT资源图标库图片库色彩板字体
A. 免费的设计资源
Freebbble:来自于Dribbble的免费的高质量作品。
Dribbble:Dribbble上“免费”的搜索结果——这是巨大的宝藏。
Graphic Burger:每个像素点都做得很细的绝佳的设计资源。
Pixel Buddha:免费和优质资源的专业社区。
Premium Pixels:为那些有创意的人提供免费的素材。
- thrift总结 - 跨语言服务开发
uule
thrift
官网
官网JAVA例子
thrift入门介绍
IBM-Apache Thrift - 可伸缩的跨语言服务开发框架
Thrift入门及Java实例演示
thrift的使用介绍
RPC
POM:
<dependency>
<groupId>org.apache.thrift</groupId>