normalization 批标准化(batch normalization)理解

数学是达成目的的工具, 理解才是达成目的桥梁, 所以这篇文章用浅显易懂的动画阐述了复杂的机器学习概念.

强烈推荐通过动画的形式了解.

所以首先放视频链接: Youtube 或者 优酷.

代码实现请来这里看: Python 实现


一 引子

对房屋售价进行预测时,我们的特征仅有房屋面积一项,但是,在实际生活中,卧室数目也一定程度上影响了房屋售价。下面,我们有这样一组训练样本:

房屋面积(英尺) 卧室数量(间) 售价(美元)
2104 3 399900
1600 3 329900
2400 3 369000
1416 2 232000
3000 4 539900
1985 4 299900
.... ... ....

注意到,房屋面积及卧室数量两个特征在数值上差异巨大,如果直接将该样本送入训练,则代价函数的轮廓会是“扁长的”,在找到最优解前,梯度下降的过程不仅是曲折的,也是非常耗时的:


二 归一化

     该问题的出现是因为我们没有同等程度的看待各个特征,即我们没有将各个特征量化到统一的区间。

     数据标准化(归一化)处理是数据挖掘的一项基础工作,不同评价指标往往具有不同的量纲和量纲单位,这样的情况会影响到数据分析的结果,为了消除指标之间的量纲影响,需要进行数据标准化处理,以解决数据指标之间的可比性。原始数据经过数据标准化处理后,各指标处于同一数量级,适合进行综合对比评价。以下是两种常用的归一化方法:


Standardization

          Standardization又称为Z-score normalization,量化后的特征将服从标准正态分布:

                               
          其中, u和delta 分别为对应特征 的均值和标准差。量化后的特征将分布在 [-1, 1] 区间。

Min-Max Scaling

     Min-Max Scaling又称为Min-Max normalization, 特征量化的公式为:
         

     量化后的特征将分布在区间。

     大多数机器学习算法中,会选择Standardization来进行特征缩放,但是,Min-Max Scaling也并非会被弃置一地。在数字图像处理中,像素强度通常就会被量化到[0,1]区间,在一般的神经网络算法中,也会要求特征被量化[0,1]区间。

     进行了特征缩放以后,代价函数的轮廓会是“偏圆”的,梯度下降过程更加笔直,收敛更快性能因此也得到提升:







普通数据标准化

normalization 批标准化(batch normalization)理解_第1张图片

Batch Normalization, 批标准化, 和普通的数据标准化类似, 是将分散的数据统一的一种做法, 也是优化神经网络的一种方法. 在之前 Normalization 的简介视频中我们一提到, 具有统一规格的数据, 能让机器学习更容易学习到数据之中的规律.




每层都做标准化

normalization 批标准化(batch normalization)理解_第2张图片

在神经网络中, 数据分布对训练会产生影响. 比如某个神经元 x 的值为1, 某个 Weights 的初始值为 0.1, 这样后一层神经元计算结果就是 Wx = 0.1; 又或者 x = 20, 这样 Wx 的结果就为 2. 现在还不能看出什么问题, 但是, 当我们加上一层激励函数, 激活这个 Wx 值的时候, 问题就来了. 如果使用 像 tanh 的激励函数, Wx 的激活值就变成了 ~0.1 和 ~1, 接近于 1 的部已经处在了 激励函数的饱和阶段, 也就是如果 x 无论再怎么扩大, tanh 激励函数输出值也还是 接近1. 换句话说, 神经网络在初始阶段已经不对那些比较大的 x 特征范围 敏感了. 这样很糟糕, 想象我轻轻拍自己的感觉和重重打自己的感觉居然没什么差别, 这就证明我的感官系统失效了. 当然我们是可以用之前提到的对数据做 normalization 预处理, 使得输入的 x 变化范围不会太大, 让输入值经过激励函数的敏感部分. 但刚刚这个不敏感问题不仅仅发生在神经网络的输入层, 而且在隐藏层中也经常会发生.

normalization 批标准化(batch normalization)理解_第3张图片

只是时候 x 换到了隐藏层当中, 我们能不能对隐藏层的输入结果进行像之前那样的normalization 处理呢? 答案是可以的, 因为大牛们发明了一种技术, 叫做 batch normalization, 正是处理这种情况.




BN 添加位置

Batch normalization 的 batch 是批数据, 把数据分成小批小批进行 stochastic gradient descent. 而且在每批数据进行前向传递 forward propagation 的时候, 对每一层都进行 normalization 的处理,

normalization 批标准化(batch normalization)理解_第4张图片

BN 效果

Batch normalization 也可以被看做一个层面. 在一层层的添加神经网络的时候, 我们先有数据 X, 再添加全连接层, 全连接层的计算结果会经过 激励函数 成为下一层的输入, 接着重复之前的操作. Batch Normalization (BN) 就被添加在每一个全连接和激励函数之间.

normalization 批标准化(batch normalization)理解_第5张图片

之前说过, 计算结果在进入激励函数前的值很重要, 如果我们不单单看一个值, 我们可以说, 计算结果值的分布对于激励函数很重要. 对于数据值大多分布在这个区间的数据, 才能进行更有效的传递. 对比这两个在激活之前的值的分布. 上者没有进行 normalization, 下者进行了 normalization, 这样当然是下者能够更有效地利用 tanh 进行非线性化的过程.

normalization 批标准化(batch normalization)理解_第6张图片

没有 normalize 的数据 使用 tanh 激活以后, 激活值大部分都分布到了饱和阶段, 也就是大部分的激活值不是-1, 就是1, 而 normalize 以后, 大部分的激活值在每个分布区间都还有存在. 再将这个激活后的分布传递到下一层神经网络进行后续计算, 每个区间都有分布的这一种对于神经网络就会更加有价值. Batch normalization 不仅仅 normalize 了一下数据, 他还进行了反 normalize 的手续. 为什么要这样呢?




BN 算法

normalization 批标准化(batch normalization)理解_第7张图片

我们引入一些 batch normalization 的公式. 这三步就是我们在刚刚一直说的 normalization 工序, 但是公式的后面还有一个反向操作, 将 normalize 后的数据再扩展和平移. 原来这是为了让神经网络自己去学着使用和修改这个扩展参数 gamma, 和 平移参数 β, 这样神经网络就能自己慢慢琢磨出前面的 normalization 操作到底有没有起到优化的作用, 如果没有起到作用, 我就使用 gamma 和 belt 来抵消一些 normalization 的操作.

normalization 批标准化(batch normalization)理解_第8张图片

最后我们来看看一张神经网络训练到最后, 代表了每层输出值的结果的分布图. 这样我们就能一眼看出 Batch normalization 的功效啦. 让每一层的值在有效的范围内传递下去.

一、BatchNormalization

keras.layers.normalization.BatchNormalization(epsilon=1e-6, weights=None)  

将前一层的激活输出按照数据batch进行归一化。
** inputshape: 任意。当把该层作为模型的第一层时,必须使用该参数(是一个整数元组,不包括样本维度)
** outputshape
: 同input shape一样。
** 参数**:

epsilon :small float>0,Fuzz parameter。
weights:初始化权值。含有2个numpy arrays的list,其shape是[(input_shape,), (input_shape,)]


你可能感兴趣的:(normalization 批标准化(batch normalization)理解)