- Python金融分析:情感分析在量化价值投资中的完整实现
AI量化价值投资入门到精通
python金融开发语言ai
Python金融分析:情感分析在量化价值投资中的完整实现关键词:Python金融分析、情感分析、量化投资、价值投资、自然语言处理、机器学习、金融文本挖掘摘要:本文系统解析如何将情感分析技术深度整合到量化价值投资体系中,通过Python实现从金融文本数据采集、预处理、情感建模到策略回测的完整流程。详细阐述基于规则引擎、机器学习和深度学习的多维度情感分析方法,结合财务指标构建复合投资模型,并通过实战案
- 检举!银龙杯北恒私募量化投资周一丰不正规不合法受骗亏损不能出金骗局!套路简直可怕!
昌龙律法
在各类网络电信诈骗中,投资理财类诈骗表现最为直接。骗子直接拉你进各种投资群聊、用直播教程对你洗脑、让你看到群里其他人“每天都在赚钱”、让你由心动到行动,然后骗你下载各种虚假软件进行所谓的“网上投资理财”。先期让你微薄获利,骗取信任,待你大额资金投入后,卷土而逃。若你也不幸被骗遇到此类平台一定不要打草惊蛇,早期不能提现还有希望挽回。免费咨询作者微信电话见【文章末尾】不成功不收费!揭秘处理平台:银龙杯
- 量化投资|现金流折现(DCF)模型全解析:从理论到实践
AI量化价值投资入门到精通
网络服务器运维ai
量化投资|现金流折现(DCF)模型全解析:从理论到实践关键词:量化投资、DCF模型、现金流折现、估值方法、财务建模、投资决策、Python实现摘要:本文全面解析现金流折现(DCF)模型在量化投资中的应用。从基础理论到实践操作,详细讲解DCF模型的核心概念、数学原理、Python实现以及实际应用场景。文章包含完整的财务建模流程、参数估计方法、敏感性分析技巧,并通过一个上市公司估值案例展示如何将理论应
- 量化投资革命:卫星图像数据如何提升价值投资准确率
AI量化价值投资入门到精通
ai
量化投资革命:卫星图像数据如何提升价值投资准确率关键词:量化投资、卫星图像数据、价值投资、准确率提升、数据挖掘摘要:本文聚焦于量化投资领域,深入探讨卫星图像数据在提升价值投资准确率方面的关键作用。首先介绍量化投资与价值投资的背景,引出卫星图像数据的引入。接着详细阐述卫星图像数据的核心概念、与投资的联系以及数据处理的核心算法原理。通过数学模型和公式分析其如何助力投资决策。结合实际项目案例展示卫星图像
- 必看!银龙杯北恒私募量化投资周一丰出金受阻无法提现,不让取现揭露真相!
昌龙律法
近年来互联网出现越来越多的传销理财庞氏骗局,都是换汤不换药,使得很多受害者自身和朋友倾家荡产,一个人的力量是有限的,因此呼吁更多的反传与打假人士加入反骗队列,帮助更多受害者,尽自己一份力量。打击网络骗局人人有责。若你也不幸被骗遇到此类平台一定不要打草惊蛇,早期不能提现还有希望挽回。免费咨询作者微信电话见【文章末尾】不成功不收费!提起传销,大家可能首先想到的是许多人挤在一个小屋子里,睡地铺吃大锅饭,
- 突发!量化投资银龙杯北恒私募实盘大赛周一丰是骗人的!被骗无法提现!
咨询张经理
突发!量化投资银龙杯北恒私募实盘大赛周一丰是骗人的!被骗无法提现!近期,我们收到多起关于诈骗分子在北恒私募高级班周一丰的骗局!北恒私募高级班周一丰在社交群组中打着“量化私募实盘大赛”和“积分投票”等噱头进行诈行骗的事件。这些诈骗分子利用投资者对私募助力大赛排名等其他新领域发展的关注,精心策划了一系列骗局,意图骗取大家的钱财。为此,我们特发出以下反诈宣传,提醒大家提高警惕,切勿上当受骗。若不幸被骗发
- python量化实战_Python与量化投资 从基础到实战.pdf
weixin_39841709
python量化实战
作者:王小川出版发行:北京:电子工业出版社,2018.03ISBN号:978-7-121-33857-1页数:408原书定价:99.00开本:16开主题词:软件工具-程序设计-应用-投资中图法分类号:F830.59-39(经济->财政、金融->金融、银行->金融、银行理论)内容提要:本书主要讲解如何利用Python进行量化投资,包括对数据的获取、整理、分析挖掘、信号构建、策略构建、回测、策略分析等
- 停止操作!创投杯北恒私募量化投资周一丰欺,骗消费者亏得血本无归!流水不够背后真相!
昌龙律法
随着数字经济的快速发展,越来越多的人开始投身于这个新兴领域,希望从中获利。然而,在这个充满机遇的领域里,也存在着不少骗局。这些骗局往往打着“高收益”、“快速致富”的幌子,吸引着缺乏投资经验和风险意识的人们。若你也不幸被骗遇到此类平台一定不要打草惊蛇,早期不能提现还有希望挽回。免费咨询作者微信电话见【文章末尾】不成功不收费!首先,我们要明白,任何投资都有风险,数字经济的投资也不例外。一些不法分子正是
- 线性代数-第9篇:二次型与正定矩阵:优化问题的数学基础
程序员勇哥
人工智能(AI)线性代数人工智能大数据python
线性代数-第9篇:二次型与正定矩阵:优化问题的数学基础在人工智能、量化投资和大数据分析中,优化问题无处不在,比如机器学习的损失函数最小化、量化投资组合的风险最小化等。而二次型与正定矩阵作为线性代数中的重要概念,为解决这些优化问题提供了坚实的数学基础。本篇将深入解析它们的原理及其在实际场景中的关键应用。一、二次型:从向量到函数的桥梁1.定义与表达式二次型是一个关于向量x\mathbf{x}x的二次齐
- 量化价值投资入门:Fama-French三因子模型详解与实战应用
量化价值投资入门到精通
ai
量化价值投资入门:Fama-French三因子模型详解与实战应用关键词:量化投资、Fama-French三因子模型、价值投资、因子投资、资产定价、Python实现、投资组合管理摘要:本文深入解析Fama-French三因子模型的理论基础、数学原理和实际应用。作为现代金融学最重要的资产定价模型之一,三因子模型通过市场因子、规模因子和价值因子解释股票收益差异。我们将从模型起源开始,详细讲解其数学表达和
- 另类数据挖掘:如何用网络搜索数据预测上市公司业绩?
量化价值投资入门到精通
数据挖掘人工智能ai
另类数据挖掘:如何用网络搜索数据预测上市公司业绩?关键词:另类数据、网络搜索数据、业绩预测、文本挖掘、机器学习、量化投资、自然语言处理摘要:本文探讨了如何利用网络搜索数据这一另类数据源来预测上市公司业绩。我们将从理论基础出发,详细分析搜索数据与公司业绩之间的关联机制,介绍完整的数据采集、处理和分析流程,并通过实际案例展示如何构建预测模型。文章还将讨论该方法的局限性、实际应用场景以及未来发展方向,为
- 强化学习在金融投资中的应用实践
AI天才研究院
AIAgent应用开发LLM大模型落地实战指南计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
强化学习在金融投资中的应用实践1.背景介绍1.1金融投资的挑战金融市场的复杂性和不确定性影响因素众多且相互关联数据噪声和非平稳性投资决策的高风险高回报特征回报与风险并存需要精准把握时机1.2传统投资方法的局限性基于人工经验的投资策略主观性强,难以复制无法处理高维复杂数据基于统计模型的量化投资假设条件过于理想化参数调优和维护成本高1.3强化学习的优势从环境中学习,无需人工标注直接优化长期累积回报处理
- 智能投顾多因子策略优化:借助AI人工智能实现弯道超车
智能投顾多因子策略优化:借助AI人工智能实现弯道超车关键词:智能投顾、多因子策略、人工智能、因子筛选、机器学习、策略优化、量化投资摘要:本文从智能投顾的核心——多因子策略出发,结合人工智能技术(如机器学习、深度学习),系统讲解传统多因子策略的痛点、AI优化的原理与方法,并通过实战案例演示如何用AI实现策略的“弯道超车”。无论是金融从业者还是技术爱好者,都能通过本文理解多因子策略与AI的融合逻辑,掌
- 8.25 常见机器学习模型的介绍
云策量化
量化软件量化入门教程量化交易量化炒股QMT量化交易入门教程程序化交易PTradedeepseek
8.25常见机器学习模型的介绍Hey,量化投资的小伙伴们!今天我们要聊的是机器学习模型,这些模型就像是我们量化投资工具箱里的瑞士军刀,多功能且强大。准备好了吗?让我们一起探索这些模型的奥秘!1.线性回归(LinearRegression)首先,让我们从最简单的模型开始——线性回归。想象一下,你有一个数据集,里面包含了房子的大小和价格。线性回归模型就像是一个魔法师,它能够找到一条直线,这条直线能够最
- Python入门量化投资【超详细】
Python_P叔
python开发语言
文章目录谈一谈使用Python入门量化投资0x00前言0x01提取数据前置条件提取数据0x02分析数据0x04计算财务回报题外话谈一谈使用Python入门量化投资0x00前言量化交易是使用计算机技术(本文主要指使用Python)帮助投资者分析大量的数据从而制定投资策略,这是属于金融和计算机的交叉领域。本文是用于指导利用Python进行量化交易的初学者入门使用,限于本人水平有限,大家轻点喷~0x01
- 量化投资,python实现
Z_TO
人工智能pythonnumpymatplotlib
1:价值投资策略以下是一个简单的用Python实现价值投资策略的实例。这个例子将使用Pandas库来处理数据,并计算一些常见的价值投资指标,如市盈率(PE)、市净率(PB)和股息率,以筛选出潜在的低估股票。这里我们选取那些我们认为市盈率小于10,市净率小于1.5,股息率大于5%的股票是低估的。importpandasaspdimportnumpyasnp#假设这是我们的股票数据,包含股票代码、最新
- python 量化投资策略的基本步骤
中年猿人
python开发语言
Python是一种非常适合进行量化投资的编程语言,原因在于它的易用性、灵活性以及有大量的库可以用于数据分析、机器学习以及可视化。下面是一个使用Python进行量化投资策略的基本步骤:**1,数据收集:**首先,你需要收集你需要的数据。这可能包括股票价格、交易量、市盈率等各种财务指标。你可以使用像pandas_datareader这样的库从网上获取这些数据。2,数据清洗和整理:数据通常包含错误或者缺
- Python量化投资入门教程:从零构建你的第一个交易策略
聪明的一休哥哥
程序员理财python开发语言量化交易
1、什么是量化投资?量化投资(QuantitativeInvestment),即通过数量化方式及计算机程序化发出买卖指令,以获取超额收益或特定风险收益比为目的的交易方式。它借助现代统计学、数学方法,利用计算机技术从海量历史数据中寻找能带来超额收益的“大概率”策略和规律,并纪律严明地按照这些策略构建的数量化模型来执行投资理念。其核心优势在于:纪律性:避免投资者在市场波动中因情绪波动做出错误决策。效率
- 用Python绘制专业的K线图【含源代码】
恒生LIGHT云社区
python
使用Python绘制一幅专业的K线图,是量化投资和金融数据分析的必备功课。下面我将从K线图简介、数据获取、K线图绘制及成交量绘制等方面,结合源代码,一步步实现专业K线图的绘制。K线图简介K线图又被成为“蜡烛图”、“阴阳线”等,它在视觉效果上可以很清晰得凸显出市场多空形势,K线图成为大家查看行情数据以及各式量化分析不可或缺的一环。在K线图常见的时间跨度分钟、日、周以及月。K线由高开低收四个价格绘制而
- Transformer架构下的量价选股策略分析:量化投资新视角
盛希蒙
Transformer架构下的量价选股策略分析:量化投资新视角【下载地址】Transformer架构下的量价选股策略研究报告探索Transformer架构在量化投资领域的创新应用,本分析报告深入剖析了ChatGPT核心算法如何赋能量价选股策略。报告详细解读了Transformer的基本原理,展示了其在构建高效选股模型中的独特优势。通过严谨的实验设计与结果分析,揭示了该架构在金融市场预测中的潜力。无
- Python爬虫实战:股票历史数据抓取与量化回测全流程详解
Python爬虫项目
2025年爬虫实战项目python爬虫开发语言okhttp学习
一、股票历史数据抓取的必要性与数据来源1.为什么要抓取股票历史数据?量化投资依赖大量的历史行情数据,通过回测历史策略可以判断策略是否有效。没有数据,量化策略无从谈起。2.常见股票数据获取渠道官方API或数据提供商:如腾讯财经、雪球、网易财经、东方财富等第三方API:tushare、AkShare等开源财经数据接口网页爬虫:通过爬取网页获取数据,适合无API或API限制的场景数据订阅服务:专业付费数
- python 高级应用11:利用tushare 获取股票基础数据,进行EA量化的基础
AI懒虫
python3python开发语言
在短线操作中量化工具是股票,外汇操作的利器。Tushare是我们获取股票等基础数据的第一步:Tushare是一个免费、开源的Python财经数据接口库,专注于为量化投资提供金融数据支持。它通过简单的API调用,可以获取包括股票、基金、期货、宏观经济等多种金融数据。核心功能股票数据基础信息:股票列表、上市公司基本信息、退市股票等行情数据:日/周/月K线(开盘价、收盘价、最高价、最低价、成交量等)分钟
- Scikit-learn:开启量化价值投资的新征程
量化价值投资入门到精通
scikit-learnpython机器学习ai
Scikit-learn:开启量化价值投资的新征程关键词:Scikit-learn、量化投资、价值投资、机器学习、特征工程、投资组合优化、金融数据分析摘要:本文深入探讨了如何利用Scikit-learn这一强大的Python机器学习库来构建量化价值投资系统。文章从基础概念出发,详细介绍了价值投资的量化实现方法,包括数据获取与处理、特征工程、模型构建与优化等关键环节。通过实际案例展示了如何使用机器学
- 零基础量化交易速成指南:Python语言的跳转语句
包含编程资料、学习路线图、源代码、软件安装包等!【[点击这里]】!在Python中,跳转语句用于改变程序的正常执行流程,在量化投资中常用于策略逻辑控制、错误处理和性能优化。以下是详细说明及实际应用示例:1.break语句:立即终止循环量化应用场景1)达到止损条件立即退出positions={'AAPL':1000,'TSLA':500}stop_loss=0.9#止损线90%forstock,va
- [大A量化专栏] 夏普比率
心心喵
大A量化专栏金融
夏普比率(SharpeRatio)是量化投资中衡量策略「风险调整后收益」的核心指标,由诺贝尔经济学奖得主威廉·夏普(WilliamSharpe)于1966年提出。它解决了单纯看收益率时忽略风险的致命缺陷。A股实战应用案例假设两个策略对比:策略A:年化收益25%,波动率30%,无风险利率3%夏普=(25%-3%)/30%≈0.73策略B:年化收益18%,波动率12%,无风险利率3%夏普=(18%-3
- python量化投资研究
olivesun88
理财PYTHON
使用Wind开放应用接口,可以轻松获取各种金融数据、快速开发个性化应用、构建量化投资平台、实现自动化生成报表、监控市场行情,或者将Wind数据服务与自有系统完美集成。http://www.dajiangzhang.com/document个人做股票研究最难得的是数据源的获取,除了从各大财经网站爬取数据外,从各大财经数据供应商提供的相关接口爬取或者下载,效率更高,数据质量也更有保证。Wind终端一直
- 量化价值投资领域竞争优势深度剖析
量化价值投资入门到精通
ai
量化价值投资领域竞争优势深度剖析关键词:量化投资、价值投资、竞争优势、因子模型、算法交易、风险管理、技术架构摘要:本文深入剖析量化价值投资领域的竞争优势构建逻辑,从技术架构、核心算法、数学模型、实战应用等维度展开分析。通过揭示数据处理能力、因子挖掘效率、策略迭代速度等核心竞争力要素,结合Python代码实现多因子模型与风险控制算法,展示如何通过技术创新构建差异化优势。适合金融科技从业者、量化投资爱
- Python量化——量化价值投资的必备技能
量化价值投资入门到精通
python网络开发语言ai
Python量化——量化价值投资的必备技能关键词:Python量化、价值投资、金融数据分析、量化交易、投资策略、机器学习、回测系统摘要:本文深入探讨Python在量化价值投资中的应用,从基础概念到实际实现,全面解析如何利用Python构建量化投资系统。文章将详细介绍量化价值投资的核心原理、Python相关工具库、数据处理方法、策略建模和回测系统实现,并通过实际案例展示如何将价值投资理念转化为可执行
- 多因子选股模型python_什么是多因子量化选股模型?
weixin_39557419
多因子选股模型python
引言量化投资中经常听到的“多因子模型”是个什么鬼?因子是影响因素的简称,或简单理解成指标。我们都知道股票收益受到多重因素的影响,比如宏观、行业、流动性、公司基本面、交易情绪等等。所谓“多因子模型”,说白了就是寻找那些对股票收益率最相关的影响因素,使用这些因素(因子或指标)来刻画股票收益并进行选股。多因子模型是量化投资领域应用最广泛也是最成熟的量化选股模型之一,建立在投资组合、资本资产定价(CAPM
- python股票量化交易系统源码_经典的股票量化交易策略(含源码)
weixin_39524147
1.多因子选股(股票)多因子模型是一类重要的选股模型,它的优点是能够综合很多信息最后得出一个选股结果。多因子模型的表现相对来说也比较稳定,因为在不同的市场情况下,总有一些因子会发挥作用。因此,在量化投资中,不同的投资者和研究者都开发了很多不同的多因子模型。各种多因子模型核心的区别一是在因子的选取上,二是在如何用多因子综合得到一个最终的判断。一般而言,多因子选股模型有两种判断方法,一是打分法,二是回
- java线程Thread和Runnable区别和联系
zx_code
javajvmthread多线程Runnable
我们都晓得java实现线程2种方式,一个是继承Thread,另一个是实现Runnable。
模拟窗口买票,第一例子继承thread,代码如下
package thread;
public class ThreadTest {
public static void main(String[] args) {
Thread1 t1 = new Thread1(
- 【转】JSON与XML的区别比较
丁_新
jsonxml
1.定义介绍
(1).XML定义
扩展标记语言 (Extensible Markup Language, XML) ,用于标记电子文件使其具有结构性的标记语言,可以用来标记数据、定义数据类型,是一种允许用户对自己的标记语言进行定义的源语言。 XML使用DTD(document type definition)文档类型定义来组织数据;格式统一,跨平台和语言,早已成为业界公认的标准。
XML是标
- c++ 实现五种基础的排序算法
CrazyMizzz
C++c算法
#include<iostream>
using namespace std;
//辅助函数,交换两数之值
template<class T>
void mySwap(T &x, T &y){
T temp = x;
x = y;
y = temp;
}
const int size = 10;
//一、用直接插入排
- 我的软件
麦田的设计者
我的软件音乐类娱乐放松
这是我写的一款app软件,耗时三个月,是一个根据央视节目开门大吉改变的,提供音调,猜歌曲名。1、手机拥有者在android手机市场下载本APP,同意权限,安装到手机上。2、游客初次进入时会有引导页面提醒用户注册。(同时软件自动播放背景音乐)。3、用户登录到主页后,会有五个模块。a、点击不胫而走,用户得到开门大吉首页部分新闻,点击进入有新闻详情。b、
- linux awk命令详解
被触发
linux awk
awk是行处理器: 相比较屏幕处理的优点,在处理庞大文件时不会出现内存溢出或是处理缓慢的问题,通常用来格式化文本信息
awk处理过程: 依次对每一行进行处理,然后输出
awk命令形式:
awk [-F|-f|-v] ‘BEGIN{} //{command1; command2} END{}’ file
[-F|-f|-v]大参数,-F指定分隔符,-f调用脚本,-v定义变量 var=val
- 各种语言比较
_wy_
编程语言
Java Ruby PHP 擅长领域
- oracle 中数据类型为clob的编辑
知了ing
oracle clob
public void updateKpiStatus(String kpiStatus,String taskId){
Connection dbc=null;
Statement stmt=null;
PreparedStatement ps=null;
try {
dbc = new DBConn().getNewConnection();
//stmt = db
- 分布式服务框架 Zookeeper -- 管理分布式环境中的数据
矮蛋蛋
zookeeper
原文地址:
http://www.ibm.com/developerworks/cn/opensource/os-cn-zookeeper/
安装和配置详解
本文介绍的 Zookeeper 是以 3.2.2 这个稳定版本为基础,最新的版本可以通过官网 http://hadoop.apache.org/zookeeper/来获取,Zookeeper 的安装非常简单,下面将从单机模式和集群模式两
- tomcat数据源
alafqq
tomcat
数据库
JNDI(Java Naming and Directory Interface,Java命名和目录接口)是一组在Java应用中访问命名和目录服务的API。
没有使用JNDI时我用要这样连接数据库:
03. Class.forName("com.mysql.jdbc.Driver");
04. conn
- 遍历的方法
百合不是茶
遍历
遍历
在java的泛
- linux查看硬件信息的命令
bijian1013
linux
linux查看硬件信息的命令
一.查看CPU:
cat /proc/cpuinfo
二.查看内存:
free
三.查看硬盘:
df
linux下查看硬件信息
1、lspci 列出所有PCI 设备;
lspci - list all PCI devices:列出机器中的PCI设备(声卡、显卡、Modem、网卡、USB、主板集成设备也能
- java常见的ClassNotFoundException
bijian1013
java
1.java.lang.ClassNotFoundException: org.apache.commons.logging.LogFactory 添加包common-logging.jar2.java.lang.ClassNotFoundException: javax.transaction.Synchronization
- 【Gson五】日期对象的序列化和反序列化
bit1129
反序列化
对日期类型的数据进行序列化和反序列化时,需要考虑如下问题:
1. 序列化时,Date对象序列化的字符串日期格式如何
2. 反序列化时,把日期字符串序列化为Date对象,也需要考虑日期格式问题
3. Date A -> str -> Date B,A和B对象是否equals
默认序列化和反序列化
import com
- 【Spark八十六】Spark Streaming之DStream vs. InputDStream
bit1129
Stream
1. DStream的类说明文档:
/**
* A Discretized Stream (DStream), the basic abstraction in Spark Streaming, is a continuous
* sequence of RDDs (of the same type) representing a continuous st
- 通过nginx获取header信息
ronin47
nginx header
1. 提取整个的Cookies内容到一个变量,然后可以在需要时引用,比如记录到日志里面,
if ( $http_cookie ~* "(.*)$") {
set $all_cookie $1;
}
变量$all_cookie就获得了cookie的值,可以用于运算了
- java-65.输入数字n,按顺序输出从1最大的n位10进制数。比如输入3,则输出1、2、3一直到最大的3位数即999
bylijinnan
java
参考了网上的http://blog.csdn.net/peasking_dd/article/details/6342984
写了个java版的:
public class Print_1_To_NDigit {
/**
* Q65.输入数字n,按顺序输出从1最大的n位10进制数。比如输入3,则输出1、2、3一直到最大的3位数即999
* 1.使用字符串
- Netty源码学习-ReplayingDecoder
bylijinnan
javanetty
ReplayingDecoder是FrameDecoder的子类,不熟悉FrameDecoder的,可以先看看
http://bylijinnan.iteye.com/blog/1982618
API说,ReplayingDecoder简化了操作,比如:
FrameDecoder在decode时,需要判断数据是否接收完全:
public class IntegerH
- js特殊字符过滤
cngolon
js特殊字符js特殊字符过滤
1.js中用正则表达式 过滤特殊字符, 校验所有输入域是否含有特殊符号function stripscript(s) { var pattern = new RegExp("[`~!@#$^&*()=|{}':;',\\[\\].<>/?~!@#¥……&*()——|{}【】‘;:”“'。,、?]"
- hibernate使用sql查询
ctrain
Hibernate
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import org.hibernate.Hibernate;
import org.hibernate.SQLQuery;
import org.hibernate.Session;
import org.hibernate.Transa
- linux shell脚本中切换用户执行命令方法
daizj
linuxshell命令切换用户
经常在写shell脚本时,会碰到要以另外一个用户来执行相关命令,其方法简单记下:
1、执行单个命令:su - user -c "command"
如:下面命令是以test用户在/data目录下创建test123目录
[root@slave19 /data]# su - test -c "mkdir /data/test123" 
- 好的代码里只要一个 return 语句
dcj3sjt126com
return
别再这样写了:public boolean foo() { if (true) { return true; } else { return false;
- Android动画效果学习
dcj3sjt126com
android
1、透明动画效果
方法一:代码实现
public View onCreateView(LayoutInflater inflater, ViewGroup container, Bundle savedInstanceState)
{
View rootView = inflater.inflate(R.layout.fragment_main, container, fals
- linux复习笔记之bash shell (4)管道命令
eksliang
linux管道命令汇总linux管道命令linux常用管道命令
转载请出自出处:
http://eksliang.iteye.com/blog/2105461
bash命令执行的完毕以后,通常这个命令都会有返回结果,怎么对这个返回的结果做一些操作呢?那就得用管道命令‘|’。
上面那段话,简单说了下管道命令的作用,那什么事管道命令呢?
答:非常的经典的一句话,记住了,何为管
- Android系统中自定义按键的短按、双击、长按事件
gqdy365
android
在项目中碰到这样的问题:
由于系统中的按键在底层做了重新定义或者新增了按键,此时需要在APP层对按键事件(keyevent)做分解处理,模拟Android系统做法,把keyevent分解成:
1、单击事件:就是普通key的单击;
2、双击事件:500ms内同一按键单击两次;
3、长按事件:同一按键长按超过1000ms(系统中长按事件为500ms);
4、组合按键:两个以上按键同时按住;
- asp.net获取站点根目录下子目录的名称
hvt
.netC#asp.nethovertreeWeb Forms
使用Visual Studio建立一个.aspx文件(Web Forms),例如hovertree.aspx,在页面上加入一个ListBox代码如下:
<asp:ListBox runat="server" ID="lbKeleyiFolder" />
那么在页面上显示根目录子文件夹的代码如下:
string[] m_sub
- Eclipse程序员要掌握的常用快捷键
justjavac
javaeclipse快捷键ide
判断一个人的编程水平,就看他用键盘多,还是鼠标多。用键盘一是为了输入代码(当然了,也包括注释),再有就是熟练使用快捷键。 曾有人在豆瓣评
《卓有成效的程序员》:“人有多大懒,才有多大闲”。之前我整理了一个
程序员图书列表,目的也就是通过读书,让程序员变懒。 写道 程序员作为特殊的群体,有的人可以这么懒,懒到事情都交给机器去做,而有的人又可
- c++编程随记
lx.asymmetric
C++笔记
为了字体更好看,改变了格式……
&&运算符:
#include<iostream>
using namespace std;
int main(){
int a=-1,b=4,k;
k=(++a<0)&&!(b--
- linux标准IO缓冲机制研究
音频数据
linux
一、什么是缓存I/O(Buffered I/O)缓存I/O又被称作标准I/O,大多数文件系统默认I/O操作都是缓存I/O。在Linux的缓存I/O机制中,操作系统会将I/O的数据缓存在文件系统的页缓存(page cache)中,也就是说,数据会先被拷贝到操作系统内核的缓冲区中,然后才会从操作系统内核的缓冲区拷贝到应用程序的地址空间。1.缓存I/O有以下优点:A.缓存I/O使用了操作系统内核缓冲区,
- 随想 生活
暗黑小菠萝
生活
其实账户之前就申请了,但是决定要自己更新一些东西看也是最近。从毕业到现在已经一年了。没有进步是假的,但是有多大的进步可能只有我自己知道。
毕业的时候班里12个女生,真正最后做到软件开发的只要两个包括我,PS:我不是说测试不好。当时因为考研完全放弃找工作,考研失败,我想这只是我的借口。那个时候才想到为什么大学的时候不能好好的学习技术,增强自己的实战能力,以至于后来找工作比较费劲。我
- 我认为POJO是一个错误的概念
windshome
javaPOJO编程J2EE设计
这篇内容其实没有经过太多的深思熟虑,只是个人一时的感觉。从个人风格上来讲,我倾向简单质朴的设计开发理念;从方法论上,我更加倾向自顶向下的设计;从做事情的目标上来看,我追求质量优先,更愿意使用较为保守和稳妥的理念和方法。
&