Ubuntu18.04 caffe安装

1.依赖项:

(1): sudo apt-get update   #更新软件列表

     sudo apt-get upgrade #更新软件

     sudo apt-get install build-essential #安装build essentialsl

     sudo apt-get install linux-headers-'uname -r' #安装最新版本的kernel headers

    上面这句话报错,用下面这句

      sudo apt-get install linux-headers-$(uname -r)        #安装最新版本的kernel headers

(2): sudo apt-get install libatlas-base-dev

(3): sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler

(4): sudo apt-get install --no-install-recommends libboost-all-dev

(5): sudo apt-get install python-dev

(6): sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev

     sudo apt-get install python-pip


2.下载caffe安装包

(1):git clone https://github.com/BVLC/caffe.git

    我在这里又出现了问题。

Cloning into 'caffe'...
remote: Enumerating objects: 64638, done.
error: RPC failed; curl 18 transfer closed with outstanding read data remaining
fatal: The remote end hung up unexpectedly
fatal: early EOF
fatal: index-pack failed

     原因:

curl的postBuffer默认值太小,需要在终端重新配置这个值

   解决:

git config --global http.postBuffer 524288000

   检查:

git config --list

显示:http.postbuffer=524288000

依然不ok?

尝试这个:git clone https://github.com/BVLC/caffe.git --depth 1

    cd caffe(路径修改到caffe所在路径,以下不再做注释)

    cp Makefile.config.example Makefile.config

(2):修改Makefile.config配置文件

在~/caffe目录下:

A、先将Makefile.config.example复制为Makefile.config

cp Makefile.config.example Makefile.config

B、去掉 # CPU_ONLY: = 1 的注释

(3):添加hdf5库文件(Makefile.config文件)

INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial/  

LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu/hdf5/serial/

接着需要更改相应的"Makefile"文件,找到

LIBRARIES +=glog gflags protobuf boost_system boost_filesystem m hdf5_hl hdf5

更改最http://www.codesec.net/view/468583.html后两项为:

LIBRARIES +=glog gflags protobuf boost_system boost_filesystem m hdf5_serial_hl hdf5_serial

(4):cd caffe;make all;make test;make runtest

第四步骤我这里有问题,于是改用第二中方法:

  1. mkdir build  
  2. cd build  
  3. cmake ..  
  4. make all -j8  

 

5、测试阶段

 

安装完了,自然要测试一下能不能用咯。首先cd到caffe目录,然后输入命令:

 

  1. sh data/mnist/get_mnist.sh  
  2. sh examples/mnist/create_mnist.sh  
  3. vim examples/mnist/lenet_solver.prototxt  

把lenet_solver.prototxt里面的solver_mode 改为 CPU。因为我们还没装GPU,暂时只使用CPU就好了。

然后我们运行脚本:

  1. ./examples/mnist/train_lenet.sh  

ok!
 

你可能感兴趣的:(教程)