Trap includes Interrupt and Exception

Trap Dispatching
Interrupts and exceptions are operating system conditions that divert the processor to code outsidethe normal flow of control. Either hardware or software can detect them. The term trap refers to a processor’s mechanism for capturing an executing thread when an exception or an interrupt occurs and transferring control to a fixed location in the operating system. In Windows, the processor transfers control to a trap handler, a function specific to a particular interrupt or exception. Figure 3-1 illustrates some of the conditions that activate trap handlers.
The kernel distinguishes between interrupts and exceptions in the following way. An interrupt is an asynchronous event (one that can occur at any time) that is unrelated to what the processor is executing. Interrupts are generated primarily by I/O devices, processor clocks, or timers, and they can be enabled (turned on) or disabled (turned off). An exception, in contrast,is a synchronous condition that results from the execution of a particular instruction. Running a program a second time with the same data under the same conditions can reproduce exceptions. Examples of exceptions include memory access violations, certain debugger instructions, and divide-by-zero errors. The kernel also regards system service calls as exceptions (although technically they’re system traps).
Either hardware or software can generate exceptions and interrupts. For example, a bus error exception is caused by a hardware problem, whereas a divide-by-zero exception is the result of a software bug. Likewise, an I/O device can generate an interrupt, or the kernel itself can issue a software interrupt (such as an APC or DPC, described later in this chapter).
When a hardware exception or interrupt is generated, the processor records enough machine state on the kernel stack of the thread that’s interrupted so that it can return to that point in the control flow and continue execution as if nothing had happened. If the thread was executing in user mode, Windows switches to the thread’s kernel-mode stack. Windows then creates a trap frame on the kernel stack of the interrupted thread into which it stores the execution state of the thread. The trap frame is a subset of a thread’s complete context, and you can view its definition by typing dt nt!_ktrap_frame in the kernel debugger. (Thread context is described in Chapter 6.) The kernel handles software interrupts either as part of hardware interrupt handling or synchronously when a thread invokes kernel functions related to the software interrupt.
In most cases, the kernel installs front-end trap handling functions that perform general trap handling tasks before and after transferring control to other functions that field the trap. For example, if the condition was a device interrupt, a kernel hardware interrupt trap handler transfers control to the interrupt service routine (ISR) that the device driver provided for the interrupting device. If the condition was caused by a call to a system service, the general system service trap handler transfers control to the specified system service function in the executive. The kernel also installs trap handlers for traps that it doesn’t expect to see or doesn’t handle. These trap handlers typically execute the system function KeBugCheckEx,which halts the computer when the kernel detects problematic or incorrect behavior that, if left unchecked, could result in data corruption. (For more information on bug checks, see Chapter 14.) The following sections describe interrupt, exception, and system service dispatching in greater detail.

你可能感兴趣的:(Windows理解,exception,system,thread,service,asynchronous,function)