- 轻松入门 NumPy(二):数组的升维降维操作
Sunhen_Qiletian
numpy
目录引言一.数组的维度、形状和轴1.1数组的维度(Dimensions)1.2数组的形状(Shape)1.3数组的轴(Axes)二.数组的升维(DimensionalityExpansion)2.1升维的操作方法2.2升维的实际应用三.数组的降维(DimensionalityReduction)3.1降维的操作方法1.使用reshape()降维2.flatten()方法3.2降维的实际应用四.总结
- OpenCV基础02_图像预处理
白槿_cha
计算机视觉基础opencv人工智能计算机视觉笔记
图像预处理在计算机视觉和图像处理领域,图像预处理是一个重要的步骤,它能够提高后续处理(如特征提取、目标检测等)的准确性和效率。OpenCV提供了许多图像预处理的函数和方法,一些常见的图像预处理操作:图像色彩空间转换图像大小调整图像仿射变换图像翻转图像裁剪图像二值化处理图像去噪边缘检测图像平滑处理图像形态学一、图像翻转cv2.flip是OpenCV库中的一个函数,用于翻转图像。翻转可以是水平翻转、垂
- Python 实现基于SDAE堆叠去噪自编码器的数据分类预测的详细项目实例(含模型描述及示例代码)
nantangyuxi
Pythonpython分类开发语言人工智能大数据深度学习机器学习
目录Python实现基于SDAE堆叠去噪自编码器的数据分类预测的详细项目实例...1项目背景介绍...2项目目标与意义...2目标...2意义...3项目挑战及解决方案...3噪声数据处理...3特征提取与降维...3模型过拟合问题...4训练时间与计算资源...4数据不平衡问题...4项目特点与创新...4去噪自编码器的堆叠应用...4多层次特征学习...4噪声抑制机制...4模型自动优化...
- 自适应滤波技术:信号处理与去噪实战
DataInnovator
本文还有配套的精品资源,点击获取简介:自适应滤波是信号处理中用于消除噪声和提升信号质量的技术。该压缩包包含多种自适应滤波相关的资源,如MATLAB代码文件和音频样本。自适应滤波算法通过动态调整滤波器参数来适应信号变化,优化滤波性能。其中,Wiener自适应滤波器是常见的实现方式。谱减法作为自适应去噪的一种策略,利用信号在频域中的不同分布特性进行降噪。用户可以通过执行代码和使用GUI来测试和观察自适
- 【语音去噪】基于IIR+FIR+自适应滤波LMS语音去噪附Matlab代码
天天Matlab代码科研顾问
matlab语音识别开发语言
✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。个人主页:Matlab科研工作室个人信条:格物致知,求助可私信。内容介绍语音去噪是语音信号处理领域中的一个核心问题,其目标是从含噪语音信号中有效地去除噪声成分,从而提高语音质量和可懂度。传统的语音去噪方法,如谱减法、维纳滤波等,存在诸多不足,例如音乐噪声、残余噪声等问题。近年来,基于I
- opencv-day2-图像预处理1
谢眠
OpenCVopencv计算机视觉
图像预处理在计算机视觉和图像处理领域,图像预处理能够提高后续处理(如特征提取、目标检测等)的准确性和效率。常见的图像预处理操作:图像色彩空间转换图像大小调整图像仿射变换图像翻转图像裁剪图像二值化处理图像去噪边缘检测图像平滑处理图像形态学图像翻转cv2.flip是OpenCV库中的一个函数,用于翻转图像。翻转可以是水平翻转、垂直翻转或同时水平和垂直翻转。这个函数接受两个参数:要翻转的图像和一个指定翻
- day 34 打卡
weixin_39908253
AI学习笔记python机器学习
day21常见的降维算法#先运行之前预处理好的代码importpandasaspdimportnumpyasnpimportmatplotlib.pyplotaspltimportseabornassnsimportwarningswarnings.filterwarnings('ignore')#设置中文字体plt.rcParams['font.sans-serif']=['SimHei']pl
- OpenCV图像预处理
图像预处理在计算机视觉和图像处理领域,图像预处理是一个重要的步骤,它能够提高后续处理(如特征提取、目标检测等)的准确性和效率。OpenCV提供了许多图像预处理的函数和方法,以下是一些常见的图像预处理操作:图像色彩空间转换图像大小调整图像仿射变换图像翻转图像裁剪图像二值化处理图像去噪边缘检测图像平滑处理图像形态学图像翻转cv2.flip是OpenCV库中的一个函数,用于翻转图像。翻转可以是水平翻转、
- MATLAB水果分级系统水果识别
清风明月来几时
图像算法处理matlab开发语言
MATLAB草莓识别系统是一个基于MATLAB的图像处理系统,用于识别和分类草莓图像。该系统可以帮助农业领域的研究人员和农民快速准确地识别草莓品种和成熟度,从而帮助决策种植、采摘和销售的工作。系统的主要功能包括:1.图像预处理:对草莓图像进行去噪、增强和标准化等预处理工作,以提高后续的图像分析和识别效果。2.特征提取:从预处理后的图像中提取代表草莓特征的信息,例如颜色、形状、纹理等。3.分类器训练
- Scikitlearn:Python机器学习库
AI天才研究院
AI人工智能与大数据AI大模型企业级应用开发实战AI实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
-Scikit-learn:Python机器学习库1.背景介绍1.1什么是Scikit-learnScikit-learn是一个基于Python语言的开源机器学习库。它建立在NumPy、SciPy和matplotlib等优秀的科学计算库之上,为用户提供了一系列高效的数据挖掘和数据分析工具,涵盖了分类、回归、聚类、降维、模型选择和预处理等机器学习的各个方面。Scikit-learn的目标是提供一个高
- 想得开:一念之转跳出来, “会当凌绝顶,一览众山小” ,降维打击
王明鹏
看过《三体》的朋友对于“降维打击”非常熟悉,地球文明乃至三体文明,在歌者眼里不过用橡皮擦拭掉的小事情,至多用“二向箔”进行二维化,这就是高纬度文明的厉害。打个比方,就如同我们对待蚂蚁一样,平时不去攻击不是不能,只是没有必要罢了,如果需要采取降维打击很容易,这就是维度差距,远比代差厉害多。因此,想得开的可操作性技术就是“升维思考,降维打击”,举个朋友分享例子。朋友晚饭后不想刷碗,老公对儿子说由他俩刷
- 【RAG优化】RAG应用中图文表格混合内容的终极检索与生成策略
kakaZhui
大模型实践之知识库RAGAIGCRAGLLM人工智能算法
1.引言:超越纯文本,RAG的“富文本”挑战传统的RAG应用大多将文档视为纯文本流。这种“降维打击”式的处理方式,在面对图文表格混合的富文本文档时,会直接导致信息降级和丢失:图表被忽略:一张信息量巨大的趋势图、架构图或饼状图,在文本提取后可能只留下一句苍白的标题(如“图3-1:年度销售额增长”),甚至完全消失。表格结构错乱:如前一篇博客所述,复杂表格被解析成无意义的字符串拼接。图文关联断裂:文本中
- 【扩散模型】正向扩散过程(Forward Diffusion)
爱吃羊的老虎
深度学习生成式模型机器学习人工智能深度学习python
0.Diffusion模型是什么?DiffusionModel(扩散模型)是一类生成模型,可以从随机噪声逐步“还原”出高质量数据(如图像),其核心思想是:正向过程把数据逐步加噪变成纯噪声,反向过程学会从噪声中一步步“去噪”还原出原始数据。正向扩散过程(ForwardDiffusion)输入原始数据(如一张图像x0x_0x0);按照某个“时间步数”t=1,2,...,Tt=1,2,...,Tt=1,
- 使用python对音频做去噪 处理
莫夭阏之
python信号处理语音识别
要使用Python对音频进行去噪处理,您可以使用许多库和算法。以下是使用librosa和scipy库实现的基本去噪算法:首先,您需要安装所需的库。您可以使用以下命令安装它们:pipinstalllibrosascipynumpy接下来,您需要导入所需的库:importlibrosaimportscipy.signalassignalimportnumpyasnp加载音频文件并提取音频数据:y,sr
- 手持激光雷达单木分割——以河南工程学院杰出校友杨靖宇将军雕塑背后树林为例
河工点云智绘WangG
河工点云智绘教育培训
教学相长,最近带学生激光雷达实习,采集了河南工程学院校园机载、车载和手持激光雷达数据,针对手持激光雷达,也来玩玩单木分割。一、手持激光雷达单木分割概念单木分割(IndividualTreeSegmentation)是从激光雷达(LiDAR)点云数据中识别并分离出单棵树木的过程,是林业资源调查、森林碳汇估算、生物多样性研究的关键技术。二、关键技术步骤详解1.点云预处理去噪:移除飞点、鸟群等非地表物体
- 【机器学习】必会降维算法之:独立成分分析(ICA)
Carl_奕然
机器学习算法人工智能
独立成分分析(ICA)1、引言2、独立成分分析(ICA)2.0引言2.1定义2.2应用场景2.3核心原理2.4实现方式2.5算法公式2.6代码示例3、总结1、引言小屌丝:鱼哥,最近胡塞武装很哇塞啊。小鱼:你什么时候开始关注军事了?小屌丝:这…还用关注吗?都上新闻了。小鱼:嗯,那你知道胡塞武装为什么这么厉害吗?小屌丝:额…当然是光脚不怕穿鞋的。小鱼:…你可真是…小屌丝:真是啥?小鱼:一个字,自己体会
- AI产品经理面试宝典第18天:AI思维矩阵构建与实战应用面试题与答法
TGITCIC
AI产品经理一线大厂面试题产品经理面试AI产品经理面试大模型产品经理面试AI面试大模型面试
如何构建AI思维矩阵?产品经理的"降维攻击"密码面试官:请解释什么是AI思维矩阵?作为产品经理如何构建这种思维?你的回答:AI思维矩阵不是技术架构,而是产品经理在AI时代的核心认知框架。它包含四个关键维度:软硬结合创新:如智能音箱通过硬件采集语音数据,软件优化交互体验,形成闭环数据驱动决策:在智能客服场景中,通过用户对话数据优化意图识别模型,实现NLU准确率提升30%生态协同视角:以智能家居为例,
- AI大模型训练的云原生实践:如何用Kubernetes指挥千卡集群?
当你的团队还在手动拼装显卡集群时,聪明人早已教会Kubernetes自动调度千卡。就像交响乐团需要指挥家,万级GPU需要云原生调度艺术。深夜的机房,硬件工程师老张盯着监控屏上跳动的红色警报——手工组装的千卡集群再次因单点故障崩溃。而隔壁团队通过Kubernetes调度的百卡集群,训练效率竟高出他们47%。这不是魔法,而是云原生调度的降维打击。一、千卡训练:为什么传统方法行不通?想象指挥没有乐谱的千
- 天文图像处理:星系分类与天体定位
xcLeigh
计算机视觉CV图像处理分类人工智能AI计算机视觉
天文图像处理:星系分类与天体定位一、前言二、天文图像处理基础2.1天文图像的获取2.2天文图像的格式2.3天文图像处理的基本流程三、天文图像预处理3.1去噪处理3.2平场校正3.3偏置校正四、星系分类4.1星系的分类体系4.2基于特征提取的星系分类方法4.3基于深度学习的星系分类方法五、天体定位5.1天体坐标系统5.2基于星图匹配的天体定位方法5.3基于深度学习的天体定位方法六、总结与展望致读者一
- MATLAB实现快速非局部均值图像去噪方法
一只爪子
本文还有配套的精品资源,点击获取简介:非局部均值滤波是一种先进的图像去噪技术,与传统方法相比,它利用图像的全局信息来去除噪声,同时保持图像细节。该算法通过搜索和利用整个图像中相似的像素块,对每个像素点进行去噪处理。本文提供的MATLAB代码FAST_NLM_II.m实现此算法,并包含必要的参数设置、相似性计算、加权平均和图像更新步骤。了解并应用此代码是学习和进一步改进非局部均值滤波技术的基础。1.
- 【常见滤波器】PCL 点云投影到拟合平面
X-Vision
《PCL算法案例开发》平面3dpcl计算机视觉算法点云
PCL点云投影到拟合平面-原理、实现与最佳实践目录平面投影的核心原理⚙️PCL平面投影架构基础平面投影实现高级投影技术与优化投影质量评估与分析️工程应用案例⚠️常见问题与解决方案可视化与调试平面投影的核心原理数学原理与几何概念点云投影到拟合平面是将三维点云数据降维到二维平面的过程,核心思想是正交投影:平面方程:ax+by+cz+d=0ax+by+cz+d=0ax+by+cz+d=0平面法向量:n=
- 前沿交叉:Fluent与深度学习驱动的流体力学计算体系
m0_75133639
流体力学深度学习人工智能航空航天fluent流体力学材料科学CFD
基础模块流体力学方程求解1、不可压缩N-S方程数值解法(有限差分/有限元/伪谱法)·Fluent工业级应用:稳态/瞬态流、两相流仿真(圆柱绕流、入水问题)·Tecplot流场可视化与数据导出2、CFD数据的AI预处理·基于PCA/SVD的流场数据降维·特征值分解与时空特征提取深度学习核心3.物理机理嵌入的神经网络架构·物理信息神经网络(PINN):将N-S方程嵌入损失函数(JAX框架实现)·神经常
- 脑电分析入门指南:信号处理、特征提取与机器学习
Ao000000
信号处理机器学习人工智能
脑电分析入门指南一、为什么要研究脑电1.课题目标(解决什么问题)2.输入与输出二、脑电分析的整体流程三、每一步详解1.数据采集2.预处理3.特征提取4.特征选择/降维5.分类与识别四、研究过程中遇到的挑战与解决方法五、学习感受一、为什么要研究脑电1.课题目标(解决什么问题)本课题旨在通过对脑电(EEG)的采集与分析,提取有用的神经信息,实现对某类脑状或行为的识别/预测/评估。例如:情绪识别、疾病诊
- 【图像去噪】论文精读:Noise2Self: Blind Denoising by Self-Supervision(N2S)
十小大
计算机视觉深度学习图像处理图像去噪人工智能论文阅读论文笔记
请先看【专栏介绍文章】:【图像去噪(ImageDenoising)】关于【图像去噪】专栏的相关说明,包含适配人群、专栏简介、专栏亮点、阅读方法、定价理由、品质承诺、关于更新、去噪概述、文章目录、资料汇总、问题汇总(更新中)文章目录前言Abstract1.Introduction2.RelatedWork3.CalibratingTraditionalModels3.1.Single-Cell3.2
- 从0开始学习计算机视觉--Day08--卷积神经网络
之前我们提到,神经网络是通过全连接层对输入做降维处理,将输入的向量通过矩阵和激活函数进行降维,在神经元上输出激活值。而卷积神经网络中,用卷积层代替了全连接层。不同的是,这里的输入不再需要降维,而是可以保留输入的空间结构,例如输入的是32×32×3的图片,在全连接层中是3072×1的向量,而卷积层里则保持不变。这里的改变的地方是对于同样的WX的函数形式,这里是把5×5×3的权重矩阵(也叫卷积核)向量
- 机器学习知识点复习 上(保研、复试、面试)百面机器学习笔记
机器学习知识点复习上一、特征工程1.为什么需要对数值类型的特征做归一化?2.文本表示模型3.图像数据不足的处理方法二、模型评估1.常见的评估指标2.ROC曲线3.为什么在一些场景中要使用余弦相似度而不是欧氏距离?4.过拟合和欠拟合三、经典算法1.支持向量机SVM2.逻辑回归3.决策树四、降维1.主成分分析(PrinalComponentsAnalysis,PCA)降维中最经典的方法2.线性判别分析
- 用AI实现“抢券自由”:手把手教你打造智能抢单机器人
目录一、手速不够?抢券党的真实困境二、技术揭秘:RPA+AI如何成为“抢券外挂”1.什么是RPA(机器人流程自动化)?2.AI工作流的降维打击三、实战教学:20行代码打造AI抢券机器人1.工具准备2.智能脚本核心代码四、高阶技巧:让机器人更“聪明”的3个秘密1.视觉识别加持2.多账号并行操作3.智能避坑策略五、技术延伸:RPA+AI还能做什么?六、避坑指南:新手常见问题解答一、手速不够?抢券党的真
- 【心电信号ECG去噪】小波变换(heursure规则阈值+Minimax规则阈值)心电信号去噪【含Matlab源码 3402期】
Matlab领域
matlab
Matlab领域博客之家
- 【信号去噪】基于NLM时间序列心电信号去噪附matlab代码
天天Matlab科研工作室
信号处理Matlab各类代码matlab开发语言fpga开发
1简介作为一种信号预处理手段,信号去噪在众多信号处理应用中发挥着重要的作用.到目前为止,信号去噪问题被大量研究,并取得了许多重要成果,涌现出了包括非局部均值(NLM)去噪算法在内的一批优秀的去噪方法.值得一提的是,相比于传统的局部去噪算法,非局部均值去噪算法有着更好的去噪性能和更好的信号细节保留能力.2部分代码function[denoisedSig,debug]=NLM_1dDarbon(sig
- 基于 Matlab 的小波变换方法对心电信号进行去噪
CodeWG
matlab数学建模开发语言
基于Matlab的小波变换方法对心电信号进行去噪心电信号是医学上常用的一种生物信号,可以反映人体心脏的电活动。然而,由于受到许多因素的干扰,如肌肉运动、电源杂波等,获取到的心电信号往往包含大量的噪声。因此,对心电信号进行准确的分析和诊断前,通常需要先对信号进行去噪处理。小波变换是一种常见的信号处理方法,在心电信号去噪方面也得到了广泛应用。它通过将信号分解成不同频率的子带,根据子带中的能量大小来进行
- 插入表主键冲突做更新
a-john
有以下场景:
用户下了一个订单,订单内的内容较多,且来自多表,首次下单的时候,内容可能会不全(部分内容不是必须,出现有些表根本就没有没有该订单的值)。在以后更改订单时,有些内容会更改,有些内容会新增。
问题:
如果在sql语句中执行update操作,在没有数据的表中会出错。如果在逻辑代码中先做查询,查询结果有做更新,没有做插入,这样会将代码复杂化。
解决:
mysql中提供了一个sql语
- Android xml资源文件中@、@android:type、@*、?、@+含义和区别
Cb123456
@+@?@*
一.@代表引用资源
1.引用自定义资源。格式:@[package:]type/name
android:text="@string/hello"
2.引用系统资源。格式:@android:type/name
android:textColor="@android:color/opaque_red"
- 数据结构的基本介绍
天子之骄
数据结构散列表树、图线性结构价格标签
数据结构的基本介绍
数据结构就是数据的组织形式,用一种提前设计好的框架去存取数据,以便更方便,高效的对数据进行增删查改。正确选择合适的数据结构,对软件程序的高效执行的影响作用不亚于算法的设计。此外,在计算机系统中数据结构的作用也是非同小可。例如常常在编程语言中听到的栈,堆等,就是经典的数据结构。
经典的数据结构大致如下:
一:线性数据结构
(1):列表
a
- 通过二维码开放平台的API快速生成二维码
一炮送你回车库
api
现在很多网站都有通过扫二维码用手机连接的功能,联图网(http://www.liantu.com/pingtai/)的二维码开放平台开放了一个生成二维码图片的Api,挺方便使用的。闲着无聊,写了个前台快速生成二维码的方法。
html代码如下:(二维码将生成在这div下)
? 1
&nbs
- ImageIO读取一张图片改变大小
3213213333332132
javaIOimageBufferedImage
package com.demo;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
/**
* @Description 读取一张图片改变大小
* @author FuJianyon
- myeclipse集成svn(一针见血)
7454103
eclipseSVNMyEclipse
&n
- 装箱与拆箱----autoboxing和unboxing
darkranger
J2SE
4.2 自动装箱和拆箱
基本数据(Primitive)类型的自动装箱(autoboxing)、拆箱(unboxing)是自J2SE 5.0开始提供的功能。虽然为您打包基本数据类型提供了方便,但提供方便的同时表示隐藏了细节,建议在能够区分基本数据类型与对象的差别时再使用。
4.2.1 autoboxing和unboxing
在Java中,所有要处理的东西几乎都是对象(Object)
- ajax传统的方式制作ajax
aijuans
Ajax
//这是前台的代码
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%> <% String path = request.getContextPath(); String basePath = request.getScheme()+
- 只用jre的eclipse是怎么编译java源文件的?
avords
javaeclipsejdktomcat
eclipse只需要jre就可以运行开发java程序了,也能自动 编译java源代码,但是jre不是java的运行环境么,难道jre中也带有编译工具? 还是eclipse自己实现的?谁能给解释一下呢问题补充:假设系统中没有安装jdk or jre,只在eclipse的目录中有一个jre,那么eclipse会采用该jre,问题是eclipse照样可以编译java源文件,为什么呢?
&nb
- 前端模块化
bee1314
模块化
背景: 前端JavaScript模块化,其实已经不是什么新鲜事了。但是很多的项目还没有真正的使用起来,还处于刀耕火种的野蛮生长阶段。 JavaScript一直缺乏有效的包管理机制,造成了大量的全局变量,大量的方法冲突。我们多么渴望有天能像Java(import),Python (import),Ruby(require)那样写代码。在没有包管理机制的年代,我们是怎么避免所
- 处理百万级以上的数据处理
bijian1013
oraclesql数据库大数据查询
一.处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 o
- mac 卸载 java 1.7 或更高版本
征客丶
javaOS
卸载 java 1.7 或更高
sudo rm -rf /Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin
成功执行此命令后,还可以执行 java 与 javac 命令
sudo rm -rf /Library/PreferencePanes/JavaControlPanel.prefPane
成功执行此命令后,还可以执行 java
- 【Spark六十一】Spark Streaming结合Flume、Kafka进行日志分析
bit1129
Stream
第一步,Flume和Kakfa对接,Flume抓取日志,写到Kafka中
第二部,Spark Streaming读取Kafka中的数据,进行实时分析
本文首先使用Kakfa自带的消息处理(脚本)来获取消息,走通Flume和Kafka的对接 1. Flume配置
1. 下载Flume和Kafka集成的插件,下载地址:https://github.com/beyondj2ee/f
- Erlang vs TNSDL
bookjovi
erlang
TNSDL是Nokia内部用于开发电信交换软件的私有语言,是在SDL语言的基础上加以修改而成,TNSDL需翻译成C语言得以编译执行,TNSDL语言中实现了异步并行的特点,当然要完整实现异步并行还需要运行时动态库的支持,异步并行类似于Erlang的process(轻量级进程),TNSDL中则称之为hand,Erlang是基于vm(beam)开发,
- 非常希望有一个预防疲劳的java软件, 预防过劳死和眼睛疲劳,大家一起努力搞一个
ljy325
企业应用
非常希望有一个预防疲劳的java软件,我看新闻和网站,国防科技大学的科学家累死了,太疲劳,老是加班,不休息,经常吃药,吃药根本就没用,根本原因是疲劳过度。我以前做java,那会公司垃圾,老想赶快学习到东西跳槽离开,搞得超负荷,不明理。深圳做软件开发经常累死人,总有不明理的人,有个软件提醒限制很好,可以挽救很多人的生命。
相关新闻:
(1)IT行业成五大疾病重灾区:过劳死平均37.9岁
- 读《研磨设计模式》-代码笔记-原型模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* Effective Java 建议使用copy constructor or copy factory来代替clone()方法:
* 1.public Product copy(Product p){}
* 2.publi
- 配置管理---svn工具之权限配置
chenyu19891124
SVN
今天花了大半天的功夫,终于弄懂svn权限配置。下面是今天收获的战绩。
安装完svn后就是在svn中建立版本库,比如我本地的是版本库路径是C:\Repositories\pepos。pepos是我的版本库。在pepos的目录结构
pepos
component
webapps
在conf里面的auth里赋予的权限配置为
[groups]
- 浅谈程序员的数学修养
comsci
设计模式编程算法面试招聘
浅谈程序员的数学修养
- 批量执行 bulk collect与forall用法
daizj
oraclesqlbulk collectforall
BULK COLLECT 子句会批量检索结果,即一次性将结果集绑定到一个集合变量中,并从SQL引擎发送到PL/SQL引擎。通常可以在SELECT INTO、
FETCH INTO以及RETURNING INTO子句中使用BULK COLLECT。本文将逐一描述BULK COLLECT在这几种情形下的用法。
有关FORALL语句的用法请参考:批量SQL之 F
- Linux下使用rsync最快速删除海量文件的方法
dongwei_6688
OS
1、先安装rsync:yum install rsync
2、建立一个空的文件夹:mkdir /tmp/test
3、用rsync删除目标目录:rsync --delete-before -a -H -v --progress --stats /tmp/test/ log/这样我们要删除的log目录就会被清空了,删除的速度会非常快。rsync实际上用的是替换原理,处理数十万个文件也是秒删。
- Yii CModel中rules验证规格
dcj3sjt126com
rulesyiivalidate
Yii cValidator主要用法分析:
yii验证rulesit 分类: Yii yii的rules验证 cValidator主要属性 attributes ,builtInValidators,enableClientValidation,message,on,safe,skipOnError
 
- 基于vagrant的redis主从实验
dcj3sjt126com
vagrant
平台: Mac
工具: Vagrant
系统: Centos6.5
实验目的: Redis主从
实现思路
制作一个基于sentos6.5, 已经安装好reids的box, 添加一个脚本配置从机, 然后作为后面主机从机的基础box
制作sentos6.5+redis的box
mkdir vagrant_redis
cd vagrant_
- Memcached(二)、Centos安装Memcached服务器
frank1234
centosmemcached
一、安装gcc
rpm和yum安装memcached服务器连接没有找到,所以我使用的是make的方式安装,由于make依赖于gcc,所以要先安装gcc
开始安装,命令如下,[color=red][b]顺序一定不能出错[/b][/color]:
建议可以先切换到root用户,不然可能会遇到权限问题:su root 输入密码......
rpm -ivh kernel-head
- Remove Duplicates from Sorted List
hcx2013
remove
Given a sorted linked list, delete all duplicates such that each element appear only once.
For example,Given 1->1->2, return 1->2.Given 1->1->2->3->3, return&
- Spring4新特性——JSR310日期时间API的支持
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- 浅谈enum与单例设计模式
247687009
java单例
在JDK1.5之前的单例实现方式有两种(懒汉式和饿汉式并无设计上的区别故看做一种),两者同是私有构
造器,导出静态成员变量,以便调用者访问。
第一种
package singleton;
public class Singleton {
//导出全局成员
public final static Singleton INSTANCE = new S
- 使用switch条件语句需要注意的几点
openwrt
cbreakswitch
1. 当满足条件的case中没有break,程序将依次执行其后的每种条件(包括default)直到遇到break跳出
int main()
{
int n = 1;
switch(n) {
case 1:
printf("--1--\n");
default:
printf("defa
- 配置Spring Mybatis JUnit测试环境的应用上下文
schnell18
springmybatisJUnit
Spring-test模块中的应用上下文和web及spring boot的有很大差异。主要试下来差异有:
单元测试的app context不支持从外部properties文件注入属性
@Value注解不能解析带通配符的路径字符串
解决第一个问题可以配置一个PropertyPlaceholderConfigurer的bean。
第二个问题的具体实例是:
 
- Java 定时任务总结一
tuoni
javaspringtimerquartztimertask
Java定时任务总结 一.从技术上分类大概分为以下三种方式: 1.Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务; 说明: java.util.Timer定时器,实际上是个线程,定时执行TimerTask类 &
- 一种防止用户生成内容站点出现商业广告以及非法有害等垃圾信息的方法
yangshangchuan
rank相似度计算文本相似度词袋模型余弦相似度
本文描述了一种在ITEYE博客频道上面出现的新型的商业广告形式及其应对方法,对于其他的用户生成内容站点类型也具有同样的适用性。
最近在ITEYE博客频道上面出现了一种新型的商业广告形式,方法如下:
1、注册多个账号(一般10个以上)。
2、从多个账号中选择一个账号,发表1-2篇博文