- 时序预测 | MATLAB实现贝叶斯优化CNN-GRU时间序列预测(股票价格预测)
Matlab机器学习之心
matlabcnngru
✅作者简介:热爱数据处理、数学建模、仿真设计、论文复现、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击主页:Matlab科研工作室个人信条:格物致知,期刊达人。内容介绍股票价格预测一直是金融领域一个极具挑战性的课题。其内在的非线性、随机性和复杂性使得传统的预测方法难以取得令人满意的效果。近年来,深度学习技术,特别是卷积神经网络(CNN)和门控循环单元(GRU)的结合,为时
- 时序预测 | MATLAB实现BO-CNN-GRU贝叶斯优化卷积门控循环单元时间序列预测
Matlab算法改进和仿真定制工程师
matlabcnngru
✅作者简介:热爱数据处理、数学建模、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击:Matlab科研工作室个人信条:格物致知。内容介绍时间序列预测在各个领域都具有重要的应用价值,例如金融市场预测、气象预报、交通流量预测等。准确地预测未来趋势对于决策制定至关重要。近年来,深度学习技术在时间序列预测领域取得了显著进展,其中卷积神经网络(CNN)和门控循环单元(GRU)由于其强
- Python爬虫【五十八章】Python数据清洗与分析全攻略:从Pandas到深度学习的异常检测进阶
程序员_CLUB
Python入门到进阶python爬虫pandas
目录背景与需求分析第一章:结构化数据清洗实战(Pandas核心技法)1.1数据去重策略矩阵1.2智能缺失值处理体系第二章:深度学习异常检测进阶2.1自动编码器异常检测(时序数据)2.2图神经网络异常检测(关系型数据)第三章:综合案例实战案例1:金融交易反欺诈系统案例2:工业传感器异常检测第四章:性能优化与工程实践4.1大数据处理加速技巧4.2模型部署方案第五章:方法论总结与展望5.1方法论框架5.
- 多维时序 | Matlab实现GA-LSTM-Attention遗传算法优化长短期记忆神经网络融合注意力机制多变量时间序列预测
天天Matlab代码科研顾问
预测模型神经网络matlablstm
✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。往期回顾关注个人主页:Matlab科研工作室个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。内容介绍风力发电是一种清洁能源,越来越受到人们的关注和重视。然而,由于风力发电的不稳定性和不可控性,风电预测成为了一个至关重要的问题。为了更精准地预测风电发电量,许多研究者开始尝试利
- GWO-CNN-BiLSTM-Attention多变量多步时间序列预测 | Matlab实现灰狼算法优化卷积双向长短期记忆融合注意力机制
✅作者简介:热爱数据处理、数学建模、仿真设计、论文复现、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击主页:Matlab科研工作室个人信条:格物致知,期刊达人。内容介绍摘要:时间序列预测在各个领域具有广泛的应用,而多变量多步时间序列预测由于其复杂性和挑战性,一直是研究热点。本文提出了一种基于灰狼算法(GreyWolfOptimizer,GWO)优化的卷积神经网络(Conv
- 使用 Dart 库轻松进行时间序列预测 - 立即执行多元预测
krishnaik06
深度学习AI写作pythonAI作画神经网络
这个视频介绍了名为Darts的Python库,它可以简化时间序列数据处理和预测。主要内容:解决时间序列预测难题:Darts库提供了多种模型,包括经典的ARIMA、SARIMAX,以及深度学习模型,可以轻松处理单变量和多变量时间序列预测。简化操作:Darts库使用统一的fit和predict函数,类似于scikit-learn,让用户可以轻松地使用各种模型。支持多种模型:Darts库包含ARIMA、
- Grafana 可视化配置
7 号
grafana
Grafana是什么Grafana是一个开源的可视化和监控工具,广泛用于查看和分析来自各种数据源的时间序列数据。它提供了一个灵活的仪表盘(dashboard)界面,用户可以通过它将数据源中的指标进行图表化展示和监控,帮助分析趋势、监控系统健康状态以及进行告警管理。Grafana常用于DevOps、IT基础设施监控和性能优化领域,与Prometheus等监控工具搭配使用非常流行。Grafana的特点
- 用Python构建机器学习模型预测股票趋势:从数据到部署的实战指南
SaleCoder
python机器学习开发语言Python股票预测LSTM股票模型机器学习股票趋势
引言在AI驱动的金融时代,机器学习股票趋势预测已成为投资者和开发者关注的热点。通过Python,我们可以构建智能模型,分析历史数据并预测未来股价走势。这不仅结合了时间序列分析和深度学习技术,还能帮助用户做出更明智的投资决策。本文将详细指导你用Python从零构建一个LSTM股票模型,结合线性回归作为基准,融入常用股票预测方法如移动平均和特征工程。我们会使用真实数据(如苹果股票),强调模型的难度与高
- 【性能测试】Jmeter+Grafana+InfluxDB+Prometheus Windows安装部署教程
软件测试-阿涛
性能测试jmetergrafanaprometheus压力测试性能优化测试工具
一、工具作用与整体架构1.1各工具核心作用工具作用描述关键特性Jmeter性能测试工具,模拟多用户并发请求,生成测试数据支持HTTP/HTTPS、数据库等多种协议,可自定义测试场景InfluxDB时序数据库,专门存储时间序列数据(如Jmeter测试结果)高写入性能,支持Flux查询语言,适合存储海量测试指标Prometheus时序数据库,专注于系统监控指标收集(如CPU、内存、网络)支持数据拉取(
- 零基础完整版入门经典深度学习时间序列预测项目实战+最新前沿时间序列预测模型代码讲解学习整理(附完整可运行代码)
OverOnEarth
时间序列预测项目实战深度学习学习人工智能
专栏内容本专栏主要整理了作者在时间序列预测领域内的一些学习思路与代码整理,帮助大家在初进入此领域时,可以快速掌握代码进行实战操作,对代码的操作再结合论文阅读肯定是上升更快嘛,作者也愿意和大家一起讨论进步,下面的内容会逐步更新,作者主页的资源列也会放出一些可下载的资源供大家参考学习噢。一、LSTM时间序列预测完整代码示例学习分析(pytorch框架)精选试读文章二、LSTM多变量输入实现多步预测完整
- 时间序列预测法的分类
cd4254818c94
时间序列预测法可用于短期预测、中期预测和长期预测。根据对资料分析方法的不同,又可分为:简单序时平均数法、加权序时平均数法、移动平均法、加权移动平均法、趋势预测法、指数平滑法、季节性趋势预测法、市场寿命周期预测法等。1.简单序时平均数法也称算术平均法。即把若干历史时期的统计数值作为观察值,求出算术平均数作为下期预测值。这种方法基于下列假设:“过去这样,今后也将这样”,把近期和远期数据等同化和平均化,
- InfluxDB保姆级教程!部署+Python操作时序数据,监控场景必备
总有刁民想爱朕ha
python开发语言Influxdb
InfluxDB保姆级教程!部署+Python操作时序数据,监控场景必备!"为什么运维半夜总被报警吵醒?""为什么老板要的实时报表总是延迟?"答案很可能是:你的时序数据库没选对!当每秒处理数万条监控数据、百万级IoT设备实时上报时,传统数据库直接崩盘!InfluxDB就是为此而生的高性能时序数据库,今天带你从部署到Python操作一站式通关!一、InfluxDB:时间序列数据的"闪电侠"什么叫时序
- Day 17: 常见的聚类算法
聚类算法聚类算法是一种无监督学习技术,用于将数据集中的相似对象分组到不同的类别(称为“簇”)中,而不需要预先定义的标签。其核心目标是:同一簇内的数据点尽可能相似(高内聚性),不同簇之间的数据点尽可能不同(高分离性)。聚类广泛应用于数据挖掘、模式识别、图像处理等领域,如客户细分、文档分类或异常检测。聚类算法的基本原理聚类依赖于相似度度量(如欧氏距离)来评估数据点之间的接近程度。假设数据集包含nnn个
- Hive的窗口函数
VictorWuuu
hivehadoop数据仓库
Hive的窗口函数(WindowFunctions)是其SQL功能的核心亮点之一,用于在分组数据上执行计算,同时保留原始表的行数(不压缩分组)。窗口函数特别适用于排名分析、趋势计算、移动统计等复杂场景,是处理时间序列数据和多维分析的利器。一、窗口函数的核心概念窗口函数的语法结构:function_name(arg1,arg2...)OVER([PARTITIONBYcol1,col2...]--分
- InfluxDB 核心字段解析与 SQL 对应关系深度剖析
一、InfluxDB数据模型全景解析作为专为时间序列数据设计的高性能数据库,InfluxDB通过独特的分层架构实现了高效存储与查询。其核心数据模型由以下关键组件构成:1.基础容器:Database功能定位:数据库层级的逻辑容器,用于隔离不同业务领域的数据。SQL映射:等同于传统关系型数据库中的Database概念,通过CREATEDATABASE语句创建。设计原则:建议按业务模块划分数据库,如监控
- 数据分析必备神器:Pandas入门实战指南(零基础也能起飞[特殊字符])
文章目录一、为什么Pandas是数据分析的神器?Pandas的三大超能力:二、5分钟极速上手(附实战代码)三、职场人必学的五个骚操作3.1数据清洗黑科技3.2多文件合并技巧3.3智能分组统计3.4时间序列分析3.5表格颜值改造四、避坑指南(血泪教训)4.1内存爆炸陷阱4.2索引混乱之谜4.3SettingWithCopy幽灵警告五、学习路线图(亲测有效)朋友们!!!今天咱们聊聊Python数据分析
- 区块链的技术
区块链的技术定义区块链的存储基于分布式数据库;数据库是区块链的数据载体,区块链是交易的业务逻辑载体;区块链按时间序列化区块数据,整个网络有一个最终确定状态;区块链只对添加有效,对其他操作无效;交易基于非对称加密的公私钥验证;区块链网络要求拜占庭将军容错;共识算法能够“解决”双花问题。区块链的核心技术组成P2P网络协议一般P2P网络技术要解决两个主要问题,第一是资源定位,第二是资源获取,其中节点发现
- LSTM学习笔记
LSTM的基本概念LSTM(LongShort-TermMemory)是一种特殊的循环神经网络(RNN),专门设计用于解决传统RNN在处理长序列数据时出现的梯度消失或梯度爆炸问题。LSTM通过引入门控机制,能够有效地捕捉长期依赖关系,广泛应用于自然语言处理、时间序列预测等领域。LSTM的核心结构LSTM的核心在于其记忆单元(MemoryCell)和三个门控机制:输入门(InputGate)、遗忘门
- AI赋能DBA:数据库管理与运维的智能化工具全景解析
AI新视界
数据库人工智能dba
AI赋能DBA:数据库管理与运维的智能化工具全景解析在数据库规模爆炸式增长与运维复杂度指数级攀升的当下,AI技术正成为DBA突破效率瓶颈的核心武器。以下从异常检测、性能优化、智能运维、自然语言交互四大场景,精选2025年最具实战价值的AI工具,并附具体应用策略。一、异常检测与根因分析:从“被动救火”到“主动防御”1.SolarWindsDPAwithAI核心优势:通过机器学习分析历史性能数据,构建
- 11、时间序列机器学习与经典模型入门
jam55
时间序列机器学习ARIMA
时间序列机器学习与经典模型入门时间序列分析在众多领域都有着广泛的应用,如经济学、气象学等。机器学习为时间序列分析提供了强大的工具,能够基于数据做出系统、可重复且经过验证的决策。下面将介绍时间序列机器学习的相关内容以及经典的时间序列模型。1.时间序列机器学习库在实际应用中,优秀的算法需要易于使用且可靠的软件实现。Python提供了许多可靠的时间序列机器学习库,以下是一些监督式回归和分类算法的实现情况
- Python 现代时间序列预测第二版(五)
绝不原创的飞龙
默认分类默认分类
原文:annas-archive.org/md5/22eab741fce9c15dfad894ecf37bdd51译者:飞龙协议:CCBY-NC-SA4.0第十七章:概率预测及更多在整本书中,我们学习了生成预测的不同技术,包括一些经典方法,使用机器学习以及一些深度学习架构。但我们一直在关注一种典型的预测问题——为连续时间序列生成点预测,并且没有层级关系且历史数据足够丰富。我们之所以这样做,是因为这
- 基于SVm和随机森林算法模型的中国黄金价格预测分析与研究
python编程狮
支持向量机算法随机森林python机器学习人工智能
摘要本研究基于回归模型,运用支持向量机(SVM)、决策树和随机森林算法,对中国黄金价格进行预测分析。通过历史黄金价格数据的分析和特征工程,建立了相应的预测模型,并利用SVM、决策树和随机森林算法进行训练和预测。首先,通过对黄金价格时间序列数据的探索性分析,发现黄金价格存在一定的趋势和季节性变化。随后,进行了数据预处理和特征选择,为建立准确的预测模型奠定了基础。分别使用SVM、决策树和随机森林算法建
- 时序数据库主流产品概览
时序数据说
时序数据库数据库物联网iotdb大数据
时序数据库(TimeSeriesDatabase,TSDB)是专为处理时间序列数据优化的数据库系统,近年来随着物联网(IoT)、金融科技、工业互联网等领域的快速发展而备受关注。本文将介绍当前主流的时序数据库产品。一、时序数据库概述时序数据是带时间戳记录的数据点序列,具有以下特点:数据时间属性强数据通常为追加写入近期数据访问频率高于历史数据数据量通常非常庞大,需要高效的压缩技术时序数据库针对这些特点
- 时序数据库在数据库领域的应用前景
数据库管理艺术
数据库时序数据库strutsai
时序数据库在数据库领域的应用前景关键词:时序数据库、时间序列数据、物联网、监控系统、金融分析、大数据、实时分析摘要:本文深入探讨了时序数据库在现代数据管理中的关键作用和应用前景。我们将从时序数据的基本特性出发,分析时序数据库的核心架构和设计原理,比较主流时序数据库产品的技术特点,并通过实际案例展示其在物联网、金融科技、运维监控等领域的应用价值。文章还将提供时序数据库选型指南,探讨未来技术发展趋势,
- 时序数据库在数据库领域的行业应用
数据库管理艺术
数据库时序数据库ai
时序数据库在数据库领域的行业应用关键词:时序数据库、数据库领域、行业应用、时间序列数据、实时分析摘要:本文深入探讨了时序数据库在数据库领域的行业应用。首先介绍了时序数据库的背景知识,包括其目的、适用读者、文档结构和相关术语。接着阐述了时序数据库的核心概念、架构和工作原理,通过Python代码详细讲解了核心算法。还介绍了相关的数学模型和公式,并举例说明。在项目实战部分,给出了开发环境搭建、源代码实现
- 通俗易懂循环神经网络(RNN)指南
本文用直观类比、图表和代码,带你轻松理解RNN及其变体(LSTM、GRU、双向RNN)的原理和应用。什么是循环神经网络循环神经网络(RecurrentNeuralNetwork,RNN)是一类专门用于处理序列数据的神经网络。与前馈神经网络不同,RNN具有“记忆”能力,能够利用过去的信息来帮助当前的决策。这使得RNN特别适合处理像语言、语音、时间序列这样具有时序特性的数据。类比:你在阅读一句话时,会
- 基于Paillier同态加密算法的金融数据安全共享机制研究【附数据】
金融数据分析与建模专家金融科研助手|论文指导|模型构建✨专业领域:金融数据处理与分析量化交易策略研究金融风险建模投资组合优化金融预测模型开发深度学习在金融中的应用擅长工具:Python/R/MATLAB量化分析机器学习模型构建金融时间序列分析蒙特卡洛模拟风险度量模型金融论文指导内容:金融数据挖掘与处理量化策略开发与回测投资组合构建与优化金融风险评估模型期刊论文✅具体问题可以私信或查看文章底部二维码
- 时序数据库:数据库领域的未来之星
数据库管理艺术
数据库专家之路大数据AI人工智能MCP&AgentSQL实战数据库时序数据库ai
时序数据库:数据库领域的未来之星关键词:时序数据库、时间序列数据、物联网、大数据分析、数据库优化、TSDB、实时数据处理摘要:本文深入探讨了时序数据库(TimeSeriesDatabase,TSDB)这一新兴数据库技术。我们将从基本概念入手,分析时序数据库的核心原理和架构设计,详细讲解其特有的数据模型和存储机制。通过实际代码示例展示如何使用主流时序数据库处理时间序列数据,并探讨其在物联网、金融科技
- Python深度学习实践:LSTM与GRU在序列数据预测中的应用
AI智能应用
Python入门实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Python深度学习实践:LSTM与GRU在序列数据预测中的应用作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来序列数据预测是机器学习领域的一个重要研究方向,涉及时间序列分析、自然语言处理、语音识别等多个领域。序列数据具有时间依赖性,即序列中每个元素都受到前面元素的影响。传统的机器学习算法难以捕捉这种时间依赖性,而深度学习
- matlab dft变换_傅里叶变换篇(一)——从时域到频域
腿毛拆床垫
matlabdft变换
这次直接进入正题哈!啥是傅里叶变换?傅里叶变换可以将时域信号转变成频域,通过分析频谱了解信号的组成。网上有大量介绍傅里叶变换的好文章,感兴趣的小伙伴可以自行查阅!什么是时域和频域呢?简单的理解是:时域的横轴为时间,反映信号随时间的变化,频域的横轴为频率,反映信号组成的不同频率分量。现实生活中因为时间和采样的原因,得到的信号大多是有限长度序列的离散时间序列的傅里叶变换(DFT)。傅里叶变换的计算机实
- 解读Servlet原理篇二---GenericServlet与HttpServlet
周凡杨
javaHttpServlet源理GenericService源码
在上一篇《解读Servlet原理篇一》中提到,要实现javax.servlet.Servlet接口(即写自己的Servlet应用),你可以写一个继承自javax.servlet.GenericServletr的generic Servlet ,也可以写一个继承自java.servlet.http.HttpServlet的HTTP Servlet(这就是为什么我们自定义的Servlet通常是exte
- MySQL性能优化
bijian1013
数据库mysql
性能优化是通过某些有效的方法来提高MySQL的运行速度,减少占用的磁盘空间。性能优化包含很多方面,例如优化查询速度,优化更新速度和优化MySQL服务器等。本文介绍方法的主要有:
a.优化查询
b.优化数据库结构
- ThreadPool定时重试
dai_lm
javaThreadPoolthreadtimertimertask
项目需要当某事件触发时,执行http请求任务,失败时需要有重试机制,并根据失败次数的增加,重试间隔也相应增加,任务可能并发。
由于是耗时任务,首先考虑的就是用线程来实现,并且为了节约资源,因而选择线程池。
为了解决不定间隔的重试,选择Timer和TimerTask来完成
package threadpool;
public class ThreadPoolTest {
- Oracle 查看数据库的连接情况
周凡杨
sqloracle 连接
首先要说的是,不同版本数据库提供的系统表会有不同,你可以根据数据字典查看该版本数据库所提供的表。
select * from dict where table_name like '%SESSION%';
就可以查出一些表,然后根据这些表就可以获得会话信息
select sid,serial#,status,username,schemaname,osuser,terminal,ma
- 类的继承
朱辉辉33
java
类的继承可以提高代码的重用行,减少冗余代码;还能提高代码的扩展性。Java继承的关键字是extends
格式:public class 类名(子类)extends 类名(父类){ }
子类可以继承到父类所有的属性和普通方法,但不能继承构造方法。且子类可以直接使用父类的public和
protected属性,但要使用private属性仍需通过调用。
子类的方法可以重写,但必须和父类的返回值类
- android 悬浮窗特效
肆无忌惮_
android
最近在开发项目的时候需要做一个悬浮层的动画,类似于支付宝掉钱动画。但是区别在于,需求是浮出一个窗口,之后边缩放边位移至屏幕右下角标签处。效果图如下:
一开始考虑用自定义View来做。后来发现开线程让其移动很卡,ListView+动画也没法精确定位到目标点。
后来想利用Dialog的dismiss动画来完成。
自定义一个Dialog后,在styl
- hadoop伪分布式搭建
林鹤霄
hadoop
要修改4个文件 1: vim hadoop-env.sh 第九行 2: vim core-site.xml <configuration> &n
- gdb调试命令
aigo
gdb
原文:http://blog.csdn.net/hanchaoman/article/details/5517362
一、GDB常用命令简介
r run 运行.程序还没有运行前使用 c cuntinue 
- Socket编程的HelloWorld实例
alleni123
socket
public class Client
{
public static void main(String[] args)
{
Client c=new Client();
c.receiveMessage();
}
public void receiveMessage(){
Socket s=null;
BufferedRea
- 线程同步和异步
百合不是茶
线程同步异步
多线程和同步 : 如进程、线程同步,可理解为进程或线程A和B一块配合,A执行到一定程度时要依靠B的某个结果,于是停下来,示意B运行;B依言执行,再将结果给A;A再继续操作。 所谓同步,就是在发出一个功能调用时,在没有得到结果之前,该调用就不返回,同时其它线程也不能调用这个方法
多线程和异步:多线程可以做不同的事情,涉及到线程通知
&
- JSP中文乱码分析
bijian1013
javajsp中文乱码
在JSP的开发过程中,经常出现中文乱码的问题。
首先了解一下Java中文问题的由来:
Java的内核和class文件是基于unicode的,这使Java程序具有良好的跨平台性,但也带来了一些中文乱码问题的麻烦。原因主要有两方面,
- js实现页面跳转重定向的几种方式
bijian1013
JavaScript重定向
js实现页面跳转重定向有如下几种方式:
一.window.location.href
<script language="javascript"type="text/javascript">
window.location.href="http://www.baidu.c
- 【Struts2三】Struts2 Action转发类型
bit1129
struts2
在【Struts2一】 Struts Hello World http://bit1129.iteye.com/blog/2109365中配置了一个简单的Action,配置如下
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configurat
- 【HBase十一】Java API操作HBase
bit1129
hbase
Admin类的主要方法注释:
1. 创建表
/**
* Creates a new table. Synchronous operation.
*
* @param desc table descriptor for table
* @throws IllegalArgumentException if the table name is res
- nginx gzip
ronin47
nginx gzip
Nginx GZip 压缩
Nginx GZip 模块文档详见:http://wiki.nginx.org/HttpGzipModule
常用配置片段如下:
gzip on; gzip_comp_level 2; # 压缩比例,比例越大,压缩时间越长。默认是1 gzip_types text/css text/javascript; # 哪些文件可以被压缩 gzip_disable &q
- java-7.微软亚院之编程判断俩个链表是否相交 给出俩个单向链表的头指针,比如 h1 , h2 ,判断这俩个链表是否相交
bylijinnan
java
public class LinkListTest {
/**
* we deal with two main missions:
*
* A.
* 1.we create two joined-List(both have no loop)
* 2.whether list1 and list2 join
* 3.print the join
- Spring源码学习-JdbcTemplate batchUpdate批量操作
bylijinnan
javaspring
Spring JdbcTemplate的batch操作最后还是利用了JDBC提供的方法,Spring只是做了一下改造和封装
JDBC的batch操作:
String sql = "INSERT INTO CUSTOMER " +
"(CUST_ID, NAME, AGE) VALUES (?, ?, ?)";
- [JWFD开源工作流]大规模拓扑矩阵存储结构最新进展
comsci
工作流
生成和创建类已经完成,构造一个100万个元素的矩阵模型,存储空间只有11M大,请大家参考我在博客园上面的文档"构造下一代工作流存储结构的尝试",更加相信的设计和代码将陆续推出.........
竞争对手的能力也很强.......,我相信..你们一定能够先于我们推出大规模拓扑扫描和分析系统的....
- base64编码和url编码
cuityang
base64url
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StringWriter;
import java.io.UnsupportedEncodingException;
- web应用集群Session保持
dalan_123
session
关于使用 memcached 或redis 存储 session ,以及使用 terracotta 服务器共享。建议使用 redis,不仅仅因为它可以将缓存的内容持久化,还因为它支持的单个对象比较大,而且数据类型丰富,不只是缓存 session,还可以做其他用途,一举几得啊。1、使用 filter 方法存储这种方法比较推荐,因为它的服务器使用范围比较多,不仅限于tomcat ,而且实现的原理比较简
- Yii 框架里数据库操作详解-[增加、查询、更新、删除的方法 'AR模式']
dcj3sjt126com
数据库
public function getMinLimit () { $sql = "..."; $result = yii::app()->db->createCo
- solr StatsComponent(聚合统计)
eksliang
solr聚合查询solr stats
StatsComponent
转载请出自出处:http://eksliang.iteye.com/blog/2169134
http://eksliang.iteye.com/ 一、概述
Solr可以利用StatsComponent 实现数据库的聚合统计查询,也就是min、max、avg、count、sum的功能
二、参数
- 百度一道面试题
greemranqq
位运算百度面试寻找奇数算法bitmap 算法
那天看朋友提了一个百度面试的题目:怎么找出{1,1,2,3,3,4,4,4,5,5,5,5} 找出出现次数为奇数的数字.
我这里复制的是原话,当然顺序是不一定的,很多拿到题目第一反应就是用map,当然可以解决,但是效率不高。
还有人觉得应该用算法xxx,我是没想到用啥算法好...!
还有觉得应该先排序...
还有觉
- Spring之在开发中使用SpringJDBC
ihuning
spring
在实际开发中使用SpringJDBC有两种方式:
1. 在Dao中添加属性JdbcTemplate并用Spring注入;
JdbcTemplate类被设计成为线程安全的,所以可以在IOC 容器中声明它的单个实例,并将这个实例注入到所有的 DAO 实例中。JdbcTemplate也利用了Java 1.5 的特定(自动装箱,泛型,可变长度
- JSON API 1.0 核心开发者自述 | 你所不知道的那些技术细节
justjavac
json
2013年5月,Yehuda Katz 完成了JSON API(英文,中文) 技术规范的初稿。事情就发生在 RailsConf 之后,在那次会议上他和 Steve Klabnik 就 JSON 雏形的技术细节相聊甚欢。在沟通单一 Rails 服务器库—— ActiveModel::Serializers 和单一 JavaScript 客户端库——&
- 网站项目建设流程概述
macroli
工作
一.概念
网站项目管理就是根据特定的规范、在预算范围内、按时完成的网站开发任务。
二.需求分析
项目立项
我们接到客户的业务咨询,经过双方不断的接洽和了解,并通过基本的可行性讨论够,初步达成制作协议,这时就需要将项目立项。较好的做法是成立一个专门的项目小组,小组成员包括:项目经理,网页设计,程序员,测试员,编辑/文档等必须人员。项目实行项目经理制。
客户的需求说明书
第一步是需
- AngularJs 三目运算 表达式判断
qiaolevip
每天进步一点点学习永无止境众观千象AngularJS
事件回顾:由于需要修改同一个模板,里面包含2个不同的内容,第一个里面使用的时间差和第二个里面名称不一样,其他过滤器,内容都大同小异。希望杜绝If这样比较傻的来判断if-show or not,继续追究其源码。
var b = "{{",
a = "}}";
this.startSymbol = function(a) {
- Spark算子:统计RDD分区中的元素及数量
superlxw1234
sparkspark算子Spark RDD分区元素
关键字:Spark算子、Spark RDD分区、Spark RDD分区元素数量
Spark RDD是被分区的,在生成RDD时候,一般可以指定分区的数量,如果不指定分区数量,当RDD从集合创建时候,则默认为该程序所分配到的资源的CPU核数,如果是从HDFS文件创建,默认为文件的Block数。
可以利用RDD的mapPartitionsWithInd
- Spring 3.2.x将于2016年12月31日停止支持
wiselyman
Spring 3
Spring 团队公布在2016年12月31日停止对Spring Framework 3.2.x(包含tomcat 6.x)的支持。在此之前spring团队将持续发布3.2.x的维护版本。
请大家及时准备及时升级到Spring
- fis纯前端解决方案fis-pure
zccst
JavaScript
作者:zccst
FIS通过插件扩展可以完美的支持模块化的前端开发方案,我们通过FIS的二次封装能力,封装了一个功能完备的纯前端模块化方案pure。
1,fis-pure的安装
$ fis install -g fis-pure
$ pure -v
0.1.4
2,下载demo到本地
git clone https://github.com/hefangshi/f