- 数据挖掘领域经典算法——CART算法
丨程序之道丨
简介CART与C4.5类似,是决策树算法的一种。此外,常见的决策树算法还有ID3,这三者的不同之处在于特征的划分:ID3:特征划分基于信息增益C4.5:特征划分基于信息增益比CART:特征划分基于基尼指数基本思想CART假设决策树是二叉树,内部结点特征的取值为“是”和“否”,左分支是取值为“是”的分支,右分支是取值为“否”的分支。这样的决策树等价于递归地二分每个特征,将输入空间即特征空间划分为有限
- 深入详解:决策树算法的概念、原理、实现与应用场景
猿享天开
算法决策树机器学习
深入详解:决策树算法的概念、原理、实现与应用场景决策树(DecisionTree)是机器学习中一种直观且广泛应用的监督学习算法,适用于分类和回归任务。其树形结构易于理解,特别适合初学者。本文将从概念、原理、实现到应用场景,全面讲解决策树,并通过流程图和可视化示例增强理解,通俗易懂,帮助小白快速掌握决策树算法相关知识。1.决策树的概念1.1什么是决策树?决策树通过一系列条件判断(决策节点)将输入数据
- 决策树算法
雨巷码行人
机器学习算法决策树机器学习
文章目录基本概念与原理决策树定义两种理解视角模型构建三要素1.特征选择(1)信息增益(ID3算法)(2)信息增益比(C4.5算法)(3)基尼指数(CART算法)2.决策树生成3.决策树剪枝(1)预剪枝(Pre-pruning)(2)后剪枝(Post-pruning)决策树算法对比CART回归树生成Scikit-learn实现分类树CART决策树-回归树决策树优劣势总结基本概念与原理决策树定义树形结
- 一招搞定分类问题!决策树算法原理与实战详解(附Python代码)
AI妈妈手把手
算法分类决策树人工智能机器学习python
嗨,大家好呀!今天咱们来聊聊机器学习中一个超实用的算法——决策树(DecisionTree),以及如何在Python中使用DecisionTreeClassifier进行分类任务。别担心,我会尽量用简单易懂的语言,还会结合一个二维散点图的例子来讲解哦!1.什么是决策树?想象你在玩「猜动物」游戏:问题1:"是哺乳动物吗?"→是→进入分支A问题2:"有羽毛吗?"→否→进入分支B→最终猜出「老虎」决策树
- 机器学习算法-决策树
不会敲代码的灵长类
机器学习机器学习算法决策树
今天我们用一个「相亲决策」的例子来讲解决策树算法,保证你轻松理解原理和实现!决策树是什么?决策树就像玩「20个问题」猜谜游戏:你心里想一个东西(比如「苹果」)朋友通过一系列问题猜(「是水果吗?」→「是红色的吗?」→...)问的问题越精准,猜得越快!机器学习中的决策树:通过一系列「如果...那么...」的规则,把数据一步步分类。例子:用决策树决定是否相亲假设你是媒婆,手上有历史相亲数据,记录每个人的
- 头歌实践教学平台python机器学习-决策树
学习只是用户态
1024程序员节
决策树简述下列说法正确的是?A、训练决策树的过程就是构建决策树的过程B、ID3算法是根据信息增益来构建决策树下列说法错误的是?B、决策树只能是一棵二叉树决策树算法任务描述本关任务:编写一个使用决策树算法进行信息增益计算及结点划分的程序。相关知识为了完成本关任务,你需要掌握:1.决策树模型,2.决策树模型用于分类,3.决策树信息熵构建。决策树模型决策树(DecisionTree)是在已知各种情况发生
- 机器学习(12)——LGBM(1)
追逐☞
机器学习机器学习
文章目录LightGBM算法详解1.算法背景2.核心创新2.1基于直方图的决策树算法2.2单边梯度采样(GOSS)2.3互斥特征捆绑(EFB)3.算法细节3.1树生长策略3.2特征并行与数据并行3.3类别特征处理4.关键参数说明4.1核心参数4.2控制速度参数4.3控制过拟合参数5.与XGBoost对比6.实践建议7.代码示例8.适用场景9.局限性LightGBM算法详解LightGBM(Ligh
- 【AI提示词】决策树专家
结冰架构
提示词人工智能决策树算法AI提示词
提示说明一位熟悉决策树算法的机器学习专家,擅长用树状图量化不同选择的结果概率。提示词#Role:决策树专家##Profile-language:中文-description:一位熟悉决策树算法的机器学习专家,擅长用树状图量化不同选择的结果概率-background:决策树是机器学习中一种经典的分类和回归算法,常用于特征重要性分析和决策支持-personality:逻辑性强,对模型解释性有特殊关注,
- 2023-2024山东大学机器学习期末回忆
Walk Me Home
机器学习人工智能
1、考试时间:2024/6/122、考试形式:闭卷3、考试科目:机器学习基础(老师:XuXinShun)一、名词解释1、聚类2、集成学习3、回归4、维度灾难5、主动学习二、简答题1、非参数估计相比参数估计有什么优点。说出两种非参数估计的方法,并解释他们的基本思想。2、梯度下降法的过程,并解释为什么每一步目标函数的值每次都是降低3、解释什么是过拟合,并给出解决过拟合的几种方法4、简述决策树算法的过程
- 【scikit-learn基础】--『监督学习』之 决策树回归
大雄野比
scikit-learn学习决策树
决策树算法是一种既可以用于分类,也可以用于回归的算法。决策树回归是通过对输入特征的不断划分来建立一棵决策树,每一步划分都基于当前数据集的最优划分特征。它的目标是最小化总体误差或最大化预测精度,其构建通常采用自上而下的贪心搜索方式,通过比较不同划分标准来选择最优划分。决策树回归广泛应用于各种回归问题,如预测房价、股票价格、客户流失等。1.算法概述决策树相关的诸多算法之中,有一种CART算法,全称是c
- 大数据分析案例-基于GBDT梯度提升决策树算法构建数据科学岗位薪资预测模型
艾派森
大数据分析案例合集机器学习python数据挖掘
♂️个人主页:@艾派森的个人主页✍作者简介:Python学习者希望大家多多支持,我们一起进步!如果文章对你有帮助的话,欢迎评论点赞收藏加关注+喜欢大数据分析项目的小伙伴,希望可以多多支持该系列的其他文章大数据分析案例合集
- 【机器学习】嘿马机器学习(算法篇)第14篇:决策树算法,学习目标【附代码文档】
程序员一诺python
机器学习教程python教程爬虫教程机器学习python人工智能算法python
本教程的知识点为:机器学习算法定位、K-近邻算法1.4k值的选择1K值选择说明1.6案例:鸢尾花种类预测--数据集介绍1案例:鸢尾花种类预测1.8案例:鸢尾花种类预测—流程实现1再识K-近邻算法API1.11案例2:预测facebook签到位置1项目描述线性回归2.3数学:求导1常见函数的导数线性回归2.5梯度下降方法介绍1详解梯度下降算法线性回归2.6线性回归api再介绍小结线性回归2.9正则化
- 机器学习经典算法——决策树算法详解与实现
SVIPCODE
机器学习算法决策树编程
机器学习经典算法——决策树算法详解与实现决策树(DecisionTree)是一种常用的机器学习算法,它是基于树形结构的有监督学习方法之一。在本文中,我们将详细介绍决策树算法的原理,并使用Python代码进行实现。1.决策树算法原理决策树算法通过对数据集进行划分来构建一棵树,每个节点表示一个特征属性,每个分支代表一个属性取值,叶子节点表示分类结果。根据不同的分裂准则,决策树可以采用多种算法进行构建,
- 决策树算法及其python实例
m0_74831463
算法决策树python
一、决策数的概念什么是决策树算法呢?决策树(DecisionTree)是一种基本的分类与回归方法,本文主要讨论分类决策树。决策树模型呈树形结构,在分类问题中,表示基于特征对数据进行分类的过程。它可以认为是if-then规则的集合。每个内部节点表示在属性上的一个测试,每个分支代表一个测试输出,每个叶节点代表一种类别二、决策树的构造1、决策树的构造步骤输入:训练集D={(21,11),(z2,32),
- 决策树算法全解析:从零基础到Titanic实战,一文搞定机器学习经典模型
吴师兄大模型
0基础实现机器学习入门到精通算法机器学习决策树人工智能深度学习编程开发语言
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 【人工智能】【Python】在Scikit-Learn中使用决策树算法(ID3和CART)
SmallBambooCode
机器学习人工智能python算法scikit-learn决策树机器学习ai
importnumpyasnpimportmatplotlib.pyplotaspltfromsklearn.datasetsimportload_irisfromsklearn.model_selectionimporttrain_test_splitfromsklearn.treeimportDecisionTreeClassifier,plot_tree#加载数据集iris=load_iri
- 梯度提升决策树(GBDT)
binggorun
决策树算法机器学习
GBDT(GradientBoostingDecisionTree),全名叫梯度提升决策树,是一种迭代的决策树算法,又叫MART(MultipleAdditiveRegressionTree),它通过构造一组弱的学习器(树),并把多颗决策树的结果累加起来作为最终的预测输出。该算法将决策树与集成思想进行了有效的结合。原理GBDT的核心思想是将多个弱学习器(通常是决策树)组合成一个强大的预测模型。具体
- 使用Scikit-Learn决策树:分类问题解决方案指南
范范0825
scikit-learn决策树分类
如何用scikit-learn的决策树分类器解决分类问题1.引言在本教程中,我们将探讨如何使用scikit-learn(sklearn)库中的决策树分类器解决分类问题。决策树是一种强大的机器学习算法,能够根据输入数据的特征属性学习决策规则,并用于预测新数据的分类标签。2.理论基础与算法介绍2.1决策树算法概述决策树是一种树形结构,每个非叶节点表示一个特征属性上的决策,每个分支代表一个决策结果的可能
- AI编程赋能Python实现零编程决策树算法
智享食事
算法AI编程python
1.概念理解决策树算法是一种监督学习算法,用于分类和回归任务。它是一种基于树结构的模型,通过一系列的决策规则来对数据进行分类或预测。决策树的每个节点代表一个特征,每个分支代表该特征的一个属性值,而每个叶节点表示一个类别或一个数值。决策树的构建过程通常分为以下几个步骤:1.特征选择:选择最佳的特征来作为当前节点的划分特征,通常使用信息增益、基尼指数或者信息熵等准则来选择最优的特征。2.建立树结构:根
- Python中的决策树算法探索
Soft_Leader
算法python决策树
在Python中,决策树算法是一种常用的机器学习技术,用于分类和回归问题。下面我们将探索如何使用Python中的scikit-learn库来实现决策树算法,并简要介绍其基本概念和用法。1.安装必要的库如果你还没有安装scikit-learn库,你可以使用pip来安装它:bash复制代码pipinstall-Uscikit-learn2.导入必要的库和模块python复制代码fromsklearn.
- 机器学习与数据挖掘:决策树(知识点总结)
KE.WINE
机器学习机器学习数据挖掘决策树
决策树叶节点对应于决策结果,内部节点表示一个特征或属性。基本流程决策树算法递归返回的三个条件:当前结点包含的样本全属于同一类别,无需划分;当前属性集为空,或是所有样本在所有属性上取值相同,无法划分;*将当前节点标记为叶节点,将其类别设定为该节点所含样本最多的类别;当前结点包含的样本集合为空,不能划分;*将当前节点标记为叶节点,将其类别设定其父节点所含样本最多的类别;划分选择决策树学习算法包括3部分
- Python中的决策树算法探索基本原理
myCOTB
Python算法python决策树
Python中的决策树算法探索决策树是一种简单而直观的机器学习算法,广泛应用于分类和回归任务中。它通过对数据进行分割,构建一个树形结构,从而做出决策。本文将探讨决策树的基本原理,并演示如何使用Python中的scikit-learn库实现决策树算法。决策树的基本原理决策树的基本思想是通过对数据进行分割,逐步缩小数据的范围,从而使得每个叶节点(终节点)中的样本属于同一类别或具有相似的特征。决策树的构
- 机器学习之决策树!决策树算法实战:葡萄酒品质预测
风清扬雨
人工智能机器学习算法决策树python
决策树算法实战:葡萄酒品质预测Hey小伙伴们,今天我们将通过一个有趣的案例来探索决策树算法在葡萄酒品质预测中的应用。想象一下,只需几个关键指标,就能预测一瓶葡萄酒的品质,是不是很神奇呢?让我们一起用Python和决策树算法,揭开葡萄酒的秘密吧!数据集介绍我们将使用著名的UCIMachineLearningRepository中的“葡萄酒品质”数据集。这个数据集包含了葡萄酒的各种化学成分和物理特性,
- 04树 + 堆 + 优先队列 + 图(D1_树(D10_决策树))
Java丨成神之路
06数据结构与算法数据结构算法
目录一、引言二、算法原理三、算法实现四、知识小结一、引言决策树算法是一种常用的机器学习算法,可用于分类和回归问题。它基于特征之间的条件判断来构建一棵树,树的每个节点代表一个特征,每个叶节点代表一个类别或回归值。决策树算法具有简单、易于理解和解释的特点,且在处理大规模数据时具有较高的效率。本文将介绍决策树算法的基本原理,并提供了Java代码示例来说明其实现过程。二、算法原理决策树算法基于“分而治之”
- 决策树算法总结(上:ID3,C4.5决策树)
陈小虾
机器学习ID3决策树决策树
文章目录一、决策树原理1.1决策树简介1.2基本概念二、数学知识2.1信息熵2.2条件熵:2.3信息增益三、ID3决策树3.1特征选择3.2算法思路3.3算法不足四、C4.5决策树算法4.1处理连续特征4.2C4.5决策树特征选取4.3处理缺失值4.4过拟合问题五、决策树C4.5算法的不足决策树是一种特殊的树形结构,一般由节点和有向边组成。其中,节点表示特征、属性或者一个类。而有向边包含有判断条件
- 人工智能与机器学习原理精解【18】
叶绿先锋
基础数学与应用数学人工智能机器学习
文章目录决策树基础决策树的定义决策树的计算决策树的例子决策树的例题决策树算法一、决策树的算法过程二、决策树的性质Julia中实现框架使用`DecisionTree.jl`使用`MLJ.jl`Julia包的教程一、了解Julia包生态系统二、安装Julia包1.打开JuliaREPL2.使用Pkg包管理器三、使用Julia包四、查找和了解Julia包1.Julia官方文档2.JuliaHub3.Gi
- 机器学习案例-决策树实现鸢尾花分类
Ausgelebt
机器学习相关python分类
机器学习案例-决策树实现鸢尾花分类目录机器学习案例-决策树实现鸢尾花分类1.选题目的和意义2.主要研究内容2.1决策树算法分类(区别于树的结构和构造算法)2.2决策树算法详解2.3决策树的应用3.算法设计3.1数据分析3.1.1Iris数据集基本介绍3.1.2样本标签值分布3.1.3样本特征值分布3.1.4相关性热力图3.2建立决策树3.3模型调优3.3.1决策树深度(预剪枝)3.3.2选取部分特
- python 连续比较_python实现连续变量最优分箱详解--CART算法
weixin_39834788
python连续比较
关于变量分箱主要分为两大类:有监督型和无监督型对应的分箱方法:A.无监督:(1)等宽(2)等频(3)聚类B.有监督:(1)卡方分箱法(ChiMerge)(2)ID3、C4.5、CART等单变量决策树算法(3)信用评分建模的IV最大化分箱等本篇使用python,基于CART算法对连续变量进行最优分箱由于CART是决策树分类算法,所以相当于是单变量决策树分类。简单介绍下理论:CART是二叉树,每次仅进
- 每天一个数据分析题(五百一十四)- 决策树算法
跟着紫枫学姐学CDA
数据分析题库算法数据分析决策树
决策树由节点和边两种元素组成的结构,决策树中不包含一下哪种结点?A.根结点(rootnode)B.内部结点(internalnode)C.外部结点(externalnode)D.叶结点(leafnode)数据分析认证考试介绍:点击进入题目来源于CDA模拟题库点击此处获取答案数据分析专项练习题库内容涵盖Python,SQL,统计学,数据分析理论,深度学习,可视化,机器学习,Spark八个方向的专项练
- 详细总结的决策树的来龙去脉,决策树的底层原理是什么?应用的场景如何快速高效应用决策树
九张算数
人工智能决策树算法机器学习
决策树是一种常见的机器学习算法,用于分类和回归任务。它通过将数据递归地划分成更小的子集来构建一个树状模型,从而做出决策。本文将详细介绍决策树的历史背景、底层原理、构建过程、常见的算法、应用场景以及优缺点。一、历史背景决策树的概念可以追溯到20世纪60年代。最早的决策树算法之一是ID3(IterativeDichotomiser3),由RossQuinlan在1986年提出。ID3通过信息增益(In
- 关于旗正规则引擎下载页面需要弹窗保存到本地目录的问题
何必如此
jsp超链接文件下载窗口
生成下载页面是需要选择“录入提交页面”,生成之后默认的下载页面<a>标签超链接为:<a href="<%=root_stimage%>stimage/image.jsp?filename=<%=strfile234%>&attachname=<%=java.net.URLEncoder.encode(file234filesourc
- 【Spark九十八】Standalone Cluster Mode下的资源调度源代码分析
bit1129
cluster
在分析源代码之前,首先对Standalone Cluster Mode的资源调度有一个基本的认识:
首先,运行一个Application需要Driver进程和一组Executor进程。在Standalone Cluster Mode下,Driver和Executor都是在Master的监护下给Worker发消息创建(Driver进程和Executor进程都需要分配内存和CPU,这就需要Maste
- linux上独立安装部署spark
daizj
linux安装spark1.4部署
下面讲一下linux上安装spark,以 Standalone Mode 安装
1)首先安装JDK
下载JDK:jdk-7u79-linux-x64.tar.gz ,版本是1.7以上都行,解压 tar -zxvf jdk-7u79-linux-x64.tar.gz
然后配置 ~/.bashrc&nb
- Java 字节码之解析一
周凡杨
java字节码javap
一: Java 字节代码的组织形式
类文件 {
OxCAFEBABE ,小版本号,大版本号,常量池大小,常量池数组,访问控制标记,当前类信息,父类信息,实现的接口个数,实现的接口信息数组,域个数,域信息数组,方法个数,方法信息数组,属性个数,属性信息数组
}
&nbs
- java各种小工具代码
g21121
java
1.数组转换成List
import java.util.Arrays;
Arrays.asList(Object[] obj); 2.判断一个String型是否有值
import org.springframework.util.StringUtils;
if (StringUtils.hasText(str)) 3.判断一个List是否有值
import org.spring
- 加快FineReport报表设计的几个心得体会
老A不折腾
finereport
一、从远程服务器大批量取数进行表样设计时,最好按“列顺序”取一个“空的SQL语句”,这样可提高设计速度。否则每次设计时模板均要从远程读取数据,速度相当慢!!
二、找一个富文本编辑软件(如NOTEPAD+)编辑SQL语句,这样会很好地检查语法。有时候带参数较多检查语法复杂时,结合FineReport中生成的日志,再找一个第三方数据库访问软件(如PL/SQL)进行数据检索,可以很快定位语法错误。
- mysql linux启动与停止
墙头上一根草
如何启动/停止/重启MySQL一、启动方式1、使用 service 启动:service mysqld start2、使用 mysqld 脚本启动:/etc/inint.d/mysqld start3、使用 safe_mysqld 启动:safe_mysqld&二、停止1、使用 service 启动:service mysqld stop2、使用 mysqld 脚本启动:/etc/inin
- Spring中事务管理浅谈
aijuans
spring事务管理
Spring中事务管理浅谈
By Tony Jiang@2012-1-20 Spring中对事务的声明式管理
拿一个XML举例
[html]
view plain
copy
print
?
<?xml version="1.0" encoding="UTF-8"?>&nb
- php中隐形字符65279(utf-8的BOM头)问题
alxw4616
php中隐形字符65279(utf-8的BOM头)问题
今天遇到一个问题. php输出JSON 前端在解析时发生问题:parsererror.
调试:
1.仔细对比字符串发现字符串拼写正确.怀疑是 非打印字符的问题.
2.逐一将字符串还原为unicode编码. 发现在字符串头的位置出现了一个 65279的非打印字符.
 
- 调用对象是否需要传递对象(初学者一定要注意这个问题)
百合不是茶
对象的传递与调用技巧
类和对象的简单的复习,在做项目的过程中有时候不知道怎样来调用类创建的对象,简单的几个类可以看清楚,一般在项目中创建十几个类往往就不知道怎么来看
为了以后能够看清楚,现在来回顾一下类和对象的创建,对象的调用和传递(前面写过一篇)
类和对象的基础概念:
JAVA中万事万物都是类 类有字段(属性),方法,嵌套类和嵌套接
- JDK1.5 AtomicLong实例
bijian1013
javathreadjava多线程AtomicLong
JDK1.5 AtomicLong实例
类 AtomicLong
可以用原子方式更新的 long 值。有关原子变量属性的描述,请参阅 java.util.concurrent.atomic 包规范。AtomicLong 可用在应用程序中(如以原子方式增加的序列号),并且不能用于替换 Long。但是,此类确实扩展了 Number,允许那些处理基于数字类的工具和实用工具进行统一访问。
 
- 自定义的RPC的Java实现
bijian1013
javarpc
网上看到纯java实现的RPC,很不错。
RPC的全名Remote Process Call,即远程过程调用。使用RPC,可以像使用本地的程序一样使用远程服务器上的程序。下面是一个简单的RPC 调用实例,从中可以看到RPC如何
- 【RPC框架Hessian一】Hessian RPC Hello World
bit1129
Hello world
什么是Hessian
The Hessian binary web service protocol makes web services usable without requiring a large framework, and without learning yet another alphabet soup of protocols. Because it is a binary p
- 【Spark九十五】Spark Shell操作Spark SQL
bit1129
shell
在Spark Shell上,通过创建HiveContext可以直接进行Hive操作
1. 操作Hive中已存在的表
[hadoop@hadoop bin]$ ./spark-shell
Spark assembly has been built with Hive, including Datanucleus jars on classpath
Welcom
- F5 往header加入客户端的ip
ronin47
when HTTP_RESPONSE {if {[HTTP::is_redirect]}{ HTTP::header replace Location [string map {:port/ /} [HTTP::header value Location]]HTTP::header replace Lo
- java-61-在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差. 求所有数对之差的最大值。例如在数组{2, 4, 1, 16, 7, 5,
bylijinnan
java
思路来自:
http://zhedahht.blog.163.com/blog/static/2541117420116135376632/
写了个java版的
public class GreatestLeftRightDiff {
/**
* Q61.在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差。
* 求所有数对之差的最大值。例如在数组
- mongoDB 索引
开窍的石头
mongoDB索引
在这一节中我们讲讲在mongo中如何创建索引
得到当前查询的索引信息
db.user.find(_id:12).explain();
cursor: basicCoursor 指的是没有索引
&
- [硬件和系统]迎峰度夏
comsci
系统
从这几天的气温来看,今年夏天的高温天气可能会维持在一个比较长的时间内
所以,从现在开始准备渡过炎热的夏天。。。。
每间房屋要有一个落地电风扇,一个空调(空调的功率和房间的面积有密切的关系)
坐的,躺的地方要有凉垫,床上要有凉席
电脑的机箱
- 基于ThinkPHP开发的公司官网
cuiyadll
行业系统
后端基于ThinkPHP,前端基于jQuery和BootstrapCo.MZ 企业系统
轻量级企业网站管理系统
运行环境:PHP5.3+, MySQL5.0
系统预览
系统下载:http://www.tecmz.com
预览地址:http://co.tecmz.com
各种设备自适应
响应式的网站设计能够对用户产生友好度,并且对于
- Transaction and redelivery in JMS (JMS的事务和失败消息重发机制)
darrenzhu
jms事务承认MQacknowledge
JMS Message Delivery Reliability and Acknowledgement Patterns
http://wso2.com/library/articles/2013/01/jms-message-delivery-reliability-acknowledgement-patterns/
Transaction and redelivery in
- Centos添加硬盘完全教程
dcj3sjt126com
linuxcentoshardware
Linux的硬盘识别:
sda 表示第1块SCSI硬盘
hda 表示第1块IDE硬盘
scd0 表示第1个USB光驱
一般使用“fdisk -l”命
- yii2 restful web服务路由
dcj3sjt126com
PHPyii2
路由
随着资源和控制器类准备,您可以使用URL如 http://localhost/index.php?r=user/create访问资源,类似于你可以用正常的Web应用程序做法。
在实践中,你通常要用美观的URL并采取有优势的HTTP动词。 例如,请求POST /users意味着访问user/create动作。 这可以很容易地通过配置urlManager应用程序组件来完成 如下所示
- MongoDB查询(4)——游标和分页[八]
eksliang
mongodbMongoDB游标MongoDB深分页
转载请出自出处:http://eksliang.iteye.com/blog/2177567 一、游标
数据库使用游标返回find的执行结果。客户端对游标的实现通常能够对最终结果进行有效控制,从shell中定义一个游标非常简单,就是将查询结果分配给一个变量(用var声明的变量就是局部变量),便创建了一个游标,如下所示:
> var
- Activity的四种启动模式和onNewIntent()
gundumw100
android
Android中Activity启动模式详解
在Android中每个界面都是一个Activity,切换界面操作其实是多个不同Activity之间的实例化操作。在Android中Activity的启动模式决定了Activity的启动运行方式。
Android总Activity的启动模式分为四种:
Activity启动模式设置:
<acti
- 攻城狮送女友的CSS3生日蛋糕
ini
htmlWebhtml5csscss3
在线预览:http://keleyi.com/keleyi/phtml/html5/29.htm
代码如下:
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>攻城狮送女友的CSS3生日蛋糕-柯乐义<
- 读源码学Servlet(1)GenericServlet 源码分析
jzinfo
tomcatWebservlet网络应用网络协议
Servlet API的核心就是javax.servlet.Servlet接口,所有的Servlet 类(抽象的或者自己写的)都必须实现这个接口。在Servlet接口中定义了5个方法,其中有3个方法是由Servlet 容器在Servlet的生命周期的不同阶段来调用的特定方法。
先看javax.servlet.servlet接口源码:
package
- JAVA进阶:VO(DTO)与PO(DAO)之间的转换
snoopy7713
javaVOHibernatepo
PO即 Persistence Object VO即 Value Object
VO和PO的主要区别在于: VO是独立的Java Object。 PO是由Hibernate纳入其实体容器(Entity Map)的对象,它代表了与数据库中某条记录对应的Hibernate实体,PO的变化在事务提交时将反应到实际数据库中。
实际上,这个VO被用作Data Transfer
- mongodb group by date 聚合查询日期 统计每天数据(信息量)
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 1 */
{
"_id" : ObjectId("557ac1e2153c43c320393d9d"),
"msgType" : "text",
"sendTime" : ISODate("2015-06-12T11:26:26.000Z")
- java之18天 常用的类(一)
Luob.
MathDateSystemRuntimeRundom
System类
import java.util.Properties;
/**
* System:
* out:标准输出,默认是控制台
* in:标准输入,默认是键盘
*
* 描述系统的一些信息
* 获取系统的属性信息:Properties getProperties();
*
*
*
*/
public class Sy
- maven
wuai
maven
1、安装maven:解压缩、添加M2_HOME、添加环境变量path
2、创建maven_home文件夹,创建项目mvn_ch01,在其下面建立src、pom.xml,在src下面简历main、test、main下面建立java文件夹
3、编写类,在java文件夹下面依照类的包逐层创建文件夹,将此类放入最后一级文件夹
4、进入mvn_ch01
4.1、mvn compile ,执行后会在