- 第N8周:使用Word2vec实现文本分类
weixin_42245644
word2vec人工智能自然语言处理
本文为365天深度学习训练营中的学习记录博客原作者:K同学啊一、数据预处理1.加载数据importtorchimporttorch.nnasnnimporttorchvisionfromtorchvisionimporttransforms,datasetsimportos,PIL,pathlib,warningswarnings.filterwarnings("ignore")#忽略警告信息#w
- 如果让计算机理解人类语言- One-hot 编码(One-hot Encoding,1950s)
如果让计算机理解人类语言-One-hot编码(One-hotEncoding,1950s)flyfish如果让计算机理解人类语言-One-hot编码(One-hotEncoding,1950s)如果让计算机理解人类语言-词袋模型(BagofWords,BoW,1970s)如果让计算机理解人类语言-Word2Vec(WordtoVector,2013)如果让计算机理解人类语言-Qwen3Embedd
- 机器学习19-Transformer和AlexNet思考
坐吃山猪
机器学习机器学习transformer人工智能
Transformer和AlexNet思考关于Transformer和AlexNet发展的一些思考1-核心知识点Word2Vec的作用是什么,和Transformer的诞生有什么关系吗?AlexNet的主要核心思路是什么,为什么表现那么好?现在有什么比AlexNet更优秀的算法2-思路整理1-Word2Vec的作用是什么,和Transformer的诞生有什么关系吗?Word2Vec的作用Word2
- 【深度学习:进阶篇】--4.2.词嵌入和NLP
西柚小萌新吖(●ˇ∀ˇ●)
#深度学习深度学习自然语言处理人工智能
在RNN中词使用one_hot表示的问题假设有10000个词每个词的向量长度都为10000,整体大小太大没能表示出词与词之间的关系例如Apple与Orange会更近一些,Man与Woman会近一些,取任意两个向量计算内积都为0目录1.词嵌入1.1.特点1.3.word2vec介绍1.3.Word2Vec案例1.3.1.训练语料1.3.2.步骤1.3.3.代码2.测试代码1.词嵌入定义:指把一个维数
- [AI笔记]-Word2Vec面试考点
Micheal超
AI笔记人工智能笔记word2vec
✅一、基础认知类什么是Word2Vec?它的基本思想是什么?关键词:将词语转换为向量表示;捕捉语义关系;基于上下文预测Word2Vec与One-hot编码的区别?关键词:维度灾难(维度过高,存储空间大)、高稀疏性、语义表达能力(没有距离概念,无法计算相似度)、内积关系Word2Vec的两种模型是什么?它们有何区别?答案:Word2Vec的重要假设:文本中离得越近的词语相似度越高。主要有:CBOW(
- embedding模型有哪些?如何选择合适的embedding模型?
行云流水AI笔记
embedding
embedding模型是一种将数据映射到低维空间的模型,常用于自然语言处理、推荐系统、图像识别等领域。以下是一些常见的embedding模型:Word2Vec:CBOW(ContinuousBag-of-Words):通过上下文预测中心词。Skip-Gram:通过中心词预测上下文。GloVe(GlobalVectorsforWordRepresentation):结合了词频统计和Word2Vec的
- 自然语言处理基础知识入门(三) RNN,LSTM,GRU模型详解
这个男人是小帅
NLP自然语言知识梳理入门rnn自然语言处理lstmgru人工智能神经网络
文章目录前言一、RNN模型1.1RNN的作用1.2RNN基本结构1.3双向循环神经网络1.4深层双向循环神经网络1.5RNN的梯度爆炸和消失问题二、LSTM模型2.1LSTM和RNN的结构对比2.2LSTM模型细节三、GRU模型总结前言在上一章节中,深入探讨了Word2vec模型的两种训练策略以及创新的优化方法,从而得到了优质的词嵌入表示。不仅如此,Word2vec作为一种语言模型,也具备根据上下
- Word2Vec 原理是什么
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpythonword2vec人工智能自然语言处理
Word2Vec原理是什么一、核心概念:从词语到向量的语义映射Word2Vec是2013年由Google提出的词嵌入(WordEmbedding)模型,其核心目标是将自然语言中的词语转换为稠密的连续向量(词向量),使向量空间中的距离能反映词语的语义相关性。本质:通过神经网络学习词语的分布式表示(DistributedRepresentation),打破传统one-hot编码“维度高、无语义关联”的
- 怎么对词编码进行可视化:Embedding Projector
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpythonembedding
怎么对词编码进行可视化:EmbeddingProjectorhttps://projector.tensorflow.org/EmbeddingProjector是用于可视化高维向量嵌入(如词向量、图像特征向量等)的工具,能帮你理解向量间的关系,下面以词向量分析和**简单自定义数据(比如特征向量)**为例,教你怎么用:一、词向量分析场景(以图中Word2Vec数据为例)1.加载数据与基础查看图里已
- python哈夫曼树压缩_哈夫曼树及python实现
七十二便
python哈夫曼树压缩
最近在看《tensorflow实战》中关于RNN一节,里面关于word2vec中涉及到了哈夫曼树,因此在查看了很多博客(文末)介绍后,按自己的理解对概念进行了整理(拼凑了下TXT..),最后自己用python实现Haffuman树的构建及编码。哈夫曼(huffman)树基本概念路径和路径长度:树中一个结点到另一个结点之间的分支构成这两个结点之间的路径;路径上的分枝数目称作路径长度,它等于路径上的结
- 词编码模型有哪些
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpython人工智能机器学习数据挖掘分类算法
词编码模型有哪些词编码模型在高维向量空间的关系解析与实例说明如Word2Vec、BERT、Qwen等一、高维向量空间的基础概念词编码模型(如Word2Vec、BERT、Qwen等)的核心是将自然语言符号映射为稠密的高维向量,使语义相近的词汇在向量空间中位置接近。以Qwen模型为例,其15万字符的词表规模(通常基于字节对编码BPE)本质是在高维空间中为每个词分配唯一的坐标点,而向量之间的几何关系(如
- NLP学习路线图(四十五):偏见与公平性
摸鱼许可证
NLP学习路线图自然语言处理学习人工智能nlp
一、偏见:算法中的“隐形歧视者”NLP模型本身并无立场,其偏见主要源于训练数据及算法设计:数据根源:人类偏见的镜像历史与社会刻板印象:大量文本数据记录着人类社会固有的偏见。词嵌入模型(如Word2Vec,GloVe)曾显示:“男人”与“程序员”的关联度远高于“女人”;“非裔美国人姓名”更易与负面词汇关联。训练语料库若包含带有性别歧视、种族歧视或地域歧视的文本,模型便可能吸收并重现这些关联。代表性偏
- 多模态核心实现技术
charles666666
自然语言处理神经网络人工智能机器学习语言模型
一、模态表示(ModalRepresentation)模态表示是将不同模态数据(文本、图像、音频等)编码为计算机可处理的向量形式的核心步骤。1.单模态编码技术文本表示:采用词嵌入模型(如Word2Vec、GloVe)或预训练语言模型(如BERT、RoBERTa),通过Transformer层提取上下文特征,生成动态词向量。高阶表示:通过句向量模型(如Sentence-BERT)将整段文本映射为固定
- 自然语言处理之语言模型:Word2Vec:Word2Vec模型的训练与优化
自然语言处理之语言模型:Word2Vec:Word2Vec模型的训练与优化自然语言处理基础文本预处理文本预处理是自然语言处理(NLP)中至关重要的第一步,它包括多个子步骤,旨在将原始文本转换为适合机器学习模型的格式。以下是一些常见的文本预处理技术:分词(Tokenization):将文本分割成单词或短语。例如,将句子“我喜欢自然语言处理”分割为“我”,“喜欢”,“自然语言处理”。转换为小写(Low
- 基于 GQA 与 MoE 的古诗词生成模型优化 llm项目以及对应八股
许愿与你永世安宁
自用大模型八股rnnnlpberttransformer人工智能深度学习word2vec
目录项目项目背景个人贡献成果产出词嵌入Word2Vec两种训练方式:两种加速训练的方法:GloVe(GlobalVectorsforWordRepresentation)FastTextMHA、GQA、MLApromptengineering位置编码正余弦编码(三角式)可学习位置编码(训练式)经典相对位置编码T5相对位置编码RotaryPositionEmbedding(RoPE)attentio
- Python自然语言处理库之gensim使用详解
Rocky006
python开发语言
概要Gensim是一个专门用于无监督主题建模和自然语言处理的Python开源库,由捷克共和国的RadimŘehůřek开发。该库专注于处理大规模文本数据,提供了多种经典的主题建模算法,如LDA(潜在狄利克雷分配)、LSI(潜在语义索引)等,以及现代化的词向量模型Word2Vec、Doc2Vec、FastText等。Gensim的设计理念是"为人类而非机器",强调易用性和可扩展性,特别适合处理无标签
- 深度学习中的负采样
洪小帅
深度学习人工智能
深度学习中的负采样负采样(NegativeSampling)是一种在训练大型分类或概率模型(尤其是在输出类别很多时)中,用来加速训练、降低计算量的方法。它常用于:词向量训练(如Word2Vec)推荐系统(从大量候选项中学正例与负例)语言模型、对比学习、信息检索等场景本质概念在许多任务中,我们的模型要从上万个候选中预测正确类别。例如:给定单词“cat”,预测它上下文中出现的词(如Word2Vec的S
- NLP学习路线图(十八):Word2Vec (CBOW & Skip-gram)
摸鱼许可证
NLP学习路线图nlp学习自然语言处理
自然语言处理(NLP)的核心挑战在于让机器“理解”人类语言。传统方法依赖独热编码(One-hotEncoding)表示单词,但它存在严重缺陷:每个单词被视为孤立的符号,无法捕捉词义关联(如“国王”与“王后”的关系),且维度灾难使计算效率低下。词向量(WordEmbedding)革命性地解决了这些问题。它将单词映射为稠密、低维的实数向量(如50-300维),其核心思想是:具有相似上下文(Contex
- Word2Vec模型学习和Word2Vec提取相似文本体验
缘友一世
深度学习word2vec学习人工智能
文章目录说明Word2Vec模型核心思想两种经典模型关键技术和算法流程优点和局限应用场景Word2Vec提取相似文本完整源码执行结果说明本文适用于初学者,体验Pytorch框架在自然语言处理中的使用。简单了解学习Word2Vec模型,体验其使用。Word2Vec模型Word2Vec是一种广泛使用的词嵌入(WordEmbedding)技术,由Google团队(TomasMikolov等)于2013年
- NLP-gensim库
安替-AnTi
NLP
Gensim是一款开源的第三方Python工具包,用于从原始的非结构化的文本中,无监督地学习到文本隐层的主题向量表达。它支持包括TF-IDF,LSA,LDA,和word2vec在内的多种主题模型算法,支持流式训练,并提供了诸如相似度计算,信息检索等一些常用任务的API接口。LSILDAHDPDTMDIMTF-IDFword2vec、paragraph2vec基本概念语料(Corpus):一组原始文
- gensim基础用法
雪儿waii
sklearn
fromgensim.modelsimportword2vecimportloggingfromgensimimportcorpora,models,similarities#logging.basicConfig(format="%(asctime)s:%(levelname)s:%(message)s",level=logging.INFO)#raw_sentences=["thequickb
- 人工智能深度学习之自然语言处理必备神器huggingface,nlp,rnn,word2vec,bert,gpt
weixin_58351028
算法机器学习深度学习自然语言处理人工智能
一。Huggingface与Nlp介绍解读(1)nlp中经常会听到分类,机器翻译,情感分析,智能客服,文本摘要,阅读理解等。我们训练的nlp模型,目的学会数据表达的逻辑,学会人类文字怎么去描述与理解,这体现出模型要有语言能力,这样就不管后续做什么都行。nlp不像cv一样输入图像后最后输出结果一个结果就完事了。如何培养模型的学习能力呢?首先要很多很多输入学习资料(这些都是大厂才能做的事)让模型去学习
- 从 Word2Vec 到 BERT:AI 不止是词向量,更是语言理解
ox180x
程序员转战大模型人工智能word2vecbert
一、前言在上篇文章中,我们介绍了Word2Vec以及它的作用,总的来说:Word2Vec是我们理解NLP的第一站Word2Vec将词变成了“向量”——终于可以用机器理解词语的相似度我们获得了例如“国王-男人+女人≈女王”的类比能力我们可以将Word2Vec这种算法能力,应用到各种创新场景,例如基于Graph的推荐系统,后续如果小伙伴有需要,可以一起深入交流。但同时也指出了它的不足:一个词=一个固定
- BERT模型原理与代码实战案例讲解
AI大模型应用之禅
人工智能数学基础计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1自然语言处理的演进自然语言处理(NLP)旨在让计算机理解和处理人类语言,其发展经历了漫长的历程:早期阶段:基于规则的方法,通过人工编写规则来解析和理解语言,但泛化能力有限。统计语言模型:利用统计方法学习语言模式,例如N-gram模型,但缺乏语义理解能力。深度学习:利用神经网络学习语言的深层特征,例如Word2Vec、RNN、LSTM等,语义理解能力显著提升。1.2BERT的诞生B
- 从代码学习深度学习 - 预训练word2vec PyTorch版
飞雪白鹿€
#自然语言处理深度学习pytorch
文章目录前言辅助工具1.绘图工具(`utils_for_huitu.py`)2.数据处理工具(`utils_for_data.py`)3.训练辅助工具(`utils_for_train.py`)预训练Word2Vec-主流程1.环境设置与数据加载2.跳元模型(Skip-gramModel)2.1.嵌入层(EmbeddingLayer)2.2.定义前向传播3.训练3.1.二元交叉熵损失3.2.初始化
- 【NLP-01】文本相似度算法:Cosine Similarity、Levenshtein Distance、Word2Vec等介绍和使用
云天徽上
NLP算法机器学习人工智能word2vec自然语言处理nlp
文本相似度计算的算法是自然语言处理领域中的关键技术,主要用于衡量两段文本在内容、语义或结构上的相似程度。以下是一些常用的文本相似度计算算法:余弦相似度(CosineSimilarity):余弦相似度是通过计算两个向量的夹角余弦值来评估它们的相似度。在文本相似度计算中,首先将文本转换为向量表示(如TF-IDF向量),然后计算这些向量之间的余弦值。余弦值越接近1,表示文本越相似。Jaccard相似度:
- 用 Gensim 实现 Word2Vec 古诗生成
万能小贤哥
word2vec人工智能自然语言处理
向量操作。我们将借助它完成从语料处理到古诗生成的全流程。6.1环境搭建与库导入首先安装Gensim及依赖库:bashpipinstallgensimnumpypandas导入必要模块:python运行fromgensim.modelsimportWord2Vec#核心词向量模型fromrandomimportchoice#随机选择字符fromos.pathimportexists#检查文件存在fr
- 图解gpt之神经概率语言模型与循环神经网络
zhaojiew10
gpt语言模型rnn
上节课我们聊了词向量表示,像Word2Vec这样的模型,它确实能捕捉到词语之间的语义关系,但问题在于,它本质上还是在孤立地看待每个词。英文的“Apple”,可以指苹果公司,也可以指水果。这种一词多义的特性,以及词语在上下文中的微妙变化,Word2Vec这种固定向量的表示方式就捉襟见肘了。而且,它还不能处理新词,一旦遇到词表里没有的词,就束手无策。所以,尽管有了词向量,NLP领域在很长一段时间内,也
- 从零开始大模型开发与微调:词向量训练模型Word2Vec使用介绍
AI大模型应用实战
javapythonjavascriptkotlingolang架构人工智能
从零开始大模型开发与微调:词向量训练模型Word2Vec使用介绍关键词:词向量,Word2Vec,神经网络,深度学习,自然语言处理(NLP),预训练,微调,Fine-Tuning1.背景介绍1.1问题由来在深度学习蓬勃发展的今天,人工智能技术在自然语言处理(NLP)、计算机视觉、语音识别等领域取得了长足的进步。然而,语言和文本数据由于其高维度和非结构化特性,使得深度学习模型的训练和应用面临诸多挑战
- 1991-2023年上市公司创新信息披露数据
经管数据库
数据分析
数据简介与传统词典法不同,本文采用“种子词集+Word2Vec相似词扩充”方法构建描述性创新信息指标。参考相关文献[11,28],对年报多次研读校验得到种子词集。相较于传统词法,Word2Vec神经网络模型可以根据语义信息将词汇转换为多维向量,并通过计算向量的相似度得到相似词。本文采用其中的CBOW(ContinuousBag-of-wordsModel)模型对中文语料进行训练。描述性创新关键词如
- java杨辉三角
3213213333332132
java基础
package com.algorithm;
/**
* @Description 杨辉三角
* @author FuJianyong
* 2015-1-22上午10:10:59
*/
public class YangHui {
public static void main(String[] args) {
//初始化二维数组长度
int[][] y
- 《大话重构》之大布局的辛酸历史
白糖_
重构
《大话重构》中提到“大布局你伤不起”,如果企图重构一个陈旧的大型系统是有非常大的风险,重构不是想象中那么简单。我目前所在公司正好对产品做了一次“大布局重构”,下面我就分享这个“大布局”项目经验给大家。
背景
公司专注于企业级管理产品软件,企业有大中小之分,在2000年初公司用JSP/Servlet开发了一套针对中
- 电驴链接在线视频播放源码
dubinwei
源码电驴播放器视频ed2k
本项目是个搜索电驴(ed2k)链接的应用,借助于磁力视频播放器(官网:
http://loveandroid.duapp.com/ 开放平台),可以实现在线播放视频,也可以用迅雷或者其他下载工具下载。
项目源码:
http://git.oschina.net/svo/Emule,动态更新。也可从附件中下载。
项目源码依赖于两个库项目,库项目一链接:
http://git.oschina.
- Javascript中函数的toString()方法
周凡杨
JavaScriptjstoStringfunctionobject
简述
The toString() method returns a string representing the source code of the function.
简译之,Javascript的toString()方法返回一个代表函数源代码的字符串。
句法
function.
- struts处理自定义异常
g21121
struts
很多时候我们会用到自定义异常来表示特定的错误情况,自定义异常比较简单,只要分清是运行时异常还是非运行时异常即可,运行时异常不需要捕获,继承自RuntimeException,是由容器自己抛出,例如空指针异常。
非运行时异常继承自Exception,在抛出后需要捕获,例如文件未找到异常。
此处我们用的是非运行时异常,首先定义一个异常LoginException:
/**
* 类描述:登录相
- Linux中find常见用法示例
510888780
linux
Linux中find常见用法示例
·find path -option [ -print ] [ -exec -ok command ] {} \;
find命令的参数;
- SpringMVC的各种参数绑定方式
Harry642
springMVC绑定表单
1. 基本数据类型(以int为例,其他类似):
Controller代码:
@RequestMapping("saysth.do")
public void test(int count) {
}
表单代码:
<form action="saysth.do" method="post&q
- Java 获取Oracle ROWID
aijuans
javaoracle
A ROWID is an identification tag unique for each row of an Oracle Database table. The ROWID can be thought of as a virtual column, containing the ID for each row.
The oracle.sql.ROWID class i
- java获取方法的参数名
antlove
javajdkparametermethodreflect
reflect.ClassInformationUtil.java
package reflect;
import javassist.ClassPool;
import javassist.CtClass;
import javassist.CtMethod;
import javassist.Modifier;
import javassist.bytecode.CodeAtt
- JAVA正则表达式匹配 查找 替换 提取操作
百合不是茶
java正则表达式替换提取查找
正则表达式的查找;主要是用到String类中的split();
String str;
str.split();方法中传入按照什么规则截取,返回一个String数组
常见的截取规则:
str.split("\\.")按照.来截取
str.
- Java中equals()与hashCode()方法详解
bijian1013
javasetequals()hashCode()
一.equals()方法详解
equals()方法在object类中定义如下:
public boolean equals(Object obj) {
return (this == obj);
}
很明显是对两个对象的地址值进行的比较(即比较引用是否相同)。但是我们知道,String 、Math、I
- 精通Oracle10编程SQL(4)使用SQL语句
bijian1013
oracle数据库plsql
--工资级别表
create table SALGRADE
(
GRADE NUMBER(10),
LOSAL NUMBER(10,2),
HISAL NUMBER(10,2)
)
insert into SALGRADE values(1,0,100);
insert into SALGRADE values(2,100,200);
inser
- 【Nginx二】Nginx作为静态文件HTTP服务器
bit1129
HTTP服务器
Nginx作为静态文件HTTP服务器
在本地系统中创建/data/www目录,存放html文件(包括index.html)
创建/data/images目录,存放imags图片
在主配置文件中添加http指令
http {
server {
listen 80;
server_name
- kafka获得最新partition offset
blackproof
kafkapartitionoffset最新
kafka获得partition下标,需要用到kafka的simpleconsumer
import java.util.ArrayList;
import java.util.Collections;
import java.util.Date;
import java.util.HashMap;
import java.util.List;
import java.
- centos 7安装docker两种方式
ronin47
第一种是采用yum 方式
yum install -y docker
 
- java-60-在O(1)时间删除链表结点
bylijinnan
java
public class DeleteNode_O1_Time {
/**
* Q 60 在O(1)时间删除链表结点
* 给定链表的头指针和一个结点指针(!!),在O(1)时间删除该结点
*
* Assume the list is:
* head->...->nodeToDelete->mNode->nNode->..
- nginx利用proxy_cache来缓存文件
cfyme
cache
user zhangy users;
worker_processes 10;
error_log /var/vlogs/nginx_error.log crit;
pid /var/vlogs/nginx.pid;
#Specifies the value for ma
- [JWFD开源工作流]JWFD嵌入式语法分析器负号的使用问题
comsci
嵌入式
假如我们需要用JWFD的语法分析模块定义一个带负号的方程式,直接在方程式之前添加负号是不正确的,而必须这样做:
string str01 = "a=3.14;b=2.71;c=0;c-((a*a)+(b*b))"
定义一个0整数c,然后用这个整数c去
- 如何集成支付宝官方文档
dai_lm
android
官方文档下载地址
https://b.alipay.com/order/productDetail.htm?productId=2012120700377310&tabId=4#ps-tabinfo-hash
集成的必要条件
1. 需要有自己的Server接收支付宝的消息
2. 需要先制作app,然后提交支付宝审核,通过后才能集成
调试的时候估计会真的扣款,请注意
- 应该在什么时候使用Hadoop
datamachine
hadoop
原帖地址:http://blog.chinaunix.net/uid-301743-id-3925358.html
存档,某些观点与我不谋而合,过度技术化不可取,且hadoop并非万能。
--------------------------------------------万能的分割线--------------------------------
有人问我,“你在大数据和Hado
- 在GridView中对于有外键的字段使用关联模型进行搜索和排序
dcj3sjt126com
yii
在GridView中使用关联模型进行搜索和排序
首先我们有两个模型它们直接有关联:
class Author extends CActiveRecord {
...
}
class Post extends CActiveRecord {
...
function relations() {
return array(
'
- 使用NSString 的格式化大全
dcj3sjt126com
Objective-C
格式定义The format specifiers supported by the NSString formatting methods and CFString formatting functions follow the IEEE printf specification; the specifiers are summarized in Table 1. Note that you c
- 使用activeX插件对象object滚动有重影
蕃薯耀
activeX插件滚动有重影
使用activeX插件对象object滚动有重影 <object style="width:0;" id="abc" classid="CLSID:D3E3970F-2927-9680-BBB4-5D0889909DF6" codebase="activex/OAX339.CAB#
- SpringMVC4零配置
hanqunfeng
springmvc4
基于Servlet3.0规范和SpringMVC4注解式配置方式,实现零xml配置,弄了个小demo,供交流讨论。
项目说明如下:
1.db.sql是项目中用到的表,数据库使用的是oracle11g
2.该项目使用mvn进行管理,私服为自搭建nexus,项目只用到一个第三方 jar,就是oracle的驱动;
3.默认项目为零配置启动,如果需要更改启动方式,请
- 《开源框架那点事儿16》:缓存相关代码的演变
j2eetop
开源框架
问题引入
上次我参与某个大型项目的优化工作,由于系统要求有比较高的TPS,因此就免不了要使用缓冲。
该项目中用的缓冲比较多,有MemCache,有Redis,有的还需要提供二级缓冲,也就是说应用服务器这层也可以设置一些缓冲。
当然去看相关实现代代码的时候,大致是下面的样子。
[java]
view plain
copy
print
?
public vo
- AngularJS浅析
kvhur
JavaScript
概念
AngularJS is a structural framework for dynamic web apps.
了解更多详情请见原文链接:http://www.gbtags.com/gb/share/5726.htm
Directive
扩展html,给html添加声明语句,以便实现自己的需求。对于页面中html元素以ng为前缀的属性名称,ng是angular的命名空间
- 架构师之jdk的bug排查(一)---------------split的点号陷阱
nannan408
split
1.前言.
jdk1.6的lang包的split方法是有bug的,它不能有效识别A.b.c这种类型,导致截取长度始终是0.而对于其他字符,则无此问题.不知道官方有没有修复这个bug.
2.代码
String[] paths = "object.object2.prop11".split("'");
System.ou
- 如何对10亿数据量级的mongoDB作高效的全表扫描
quentinXXZ
mongodb
本文链接:
http://quentinXXZ.iteye.com/blog/2149440
一、正常情况下,不应该有这种需求
首先,大家应该有个概念,标题中的这个问题,在大多情况下是一个伪命题,不应该被提出来。要知道,对于一般较大数据量的数据库,全表查询,这种操作一般情况下是不应该出现的,在做正常查询的时候,如果是范围查询,你至少应该要加上limit。
说一下,
- C语言算法之水仙花数
qiufeihu
c算法
/**
* 水仙花数
*/
#include <stdio.h>
#define N 10
int main()
{
int x,y,z;
for(x=1;x<=N;x++)
for(y=0;y<=N;y++)
for(z=0;z<=N;z++)
if(x*100+y*10+z == x*x*x
- JSP指令
wyzuomumu
jsp
jsp指令的一般语法格式: <%@ 指令名 属性 =”值 ” %>
常用的三种指令: page,include,taglib
page指令语法形式: <%@ page 属性 1=”值 1” 属性 2=”值 2”%>
include指令语法形式: <%@include file=”relative url”%> (jsp可以通过 include