【论文】强化学习必读经典论文 | 如何学习强化学习 | 强化学习入门

  1. Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.
  2. Gerald Tesauro. Temporal difference learning and TD-gammon. Communications of the ACM, 38(3):58–68, 1995.
  3. Kaelbling, Leslie P., Littman, Michael L., Moore, Andrew W. Reinforcement Learning: A Survey. Journal of Artificial Intelligence Research. 4: 237-285, 1996.
  4. John N Tsitsiklis, B Van Roy. An analysis of temporal-difference learning with function approximation. IEEE Transactions on Automatic Control, 1997.
  5. Richard Sutton. Learning to predict by the methods of temporal differences. Machine Learning. 3 (1): 9-44.1988.
  6. Richard S Sutton, David A Mcallester, Satinder P Singh, Yishay Mansour. Policy Gradient methods for reinforcement learning with function approximation. neural information processing systems, 2000.
  7. Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou. Playing Atari with Deep Reinforcement Learning. NIPS 2013.
  8. Mnih, Volodymyr, et al. Human-level control through deep reinforcement learning. Nature. 518 (7540): 529-533, 2015.
  9. Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa. Continuous Control With Deep Reinforcement Learning. international conference on learning representations, 2016.
  10. Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Tim Harley, Timothy P Lill. Asynchronous methods for deep reinforcement learning. international conference on machine learning, 2016.
  11. Yuxi Li. Deep Reinforcement Learning: An Overview. 2017.
  12. David Silver, et al. Mastering the Game of Go with Deep Neural Networks and Tree Search. Nature, 2016.
  13. David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez. AlphaZero: Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm. arXiv: Artificial Intelligence, 2017.

 

欢迎留言补充 

你可能感兴趣的:(AI-DL-ML论文)