- 漏检率骤升20%的安防困局:陌讯动态剪枝技术如何破局
2501_92473199
人工智能机器学习算法目标检测计算机视觉视觉检测
1.开篇痛点:安防监控的夜间困局传统目标检测算法在复杂安防场景中面临三重挑战:光照敏感:低光环境下行人检测mAP暴跌至65%以下,夜间误报率高达40%目标遮挡:密集场景(如校园周界)漏检率超25%,某园区因货柜遮挡漏检损失超万元/次算力瓶颈:边缘设备(如JetsonXavier)运行YOLOv5仅12FPS,响应延迟>200ms某安防厂商反馈:40%误报率迫使每2小时人工复核,运维成本激增37%2
- 【目标检测】刺猬数据集3238张YOLO+VOC格式
不会仰游的河马君
数据集目标检测YOLO人工智能刺猬
【目标检测】刺猬数据集3238张YOLO+VOC格式数据集格式:VOC格式+YOLO格式压缩包内含:3个文件夹,分别存储图片、xml、txt文件JPEGImages文件夹中jpg图片总计:3238Annotations文件夹中xml文件总计:3238labels文件夹中txt文件总计:3238标签种类数:1标签名称:["hedgehog"]每个标签的框数(注意yolo格式类别顺序不和这个对应,而以
- 接口测试框架3之httprunnerV3入门以及HttpRunner安装详解
吃喝玩乐秀起来
#接口测试接口
这里写目录标题一、HttpRunner简介二、HtttpRunner安装详解1.环境准备2.脚手架生成项目三、幕布登录的演练1.抓包2.脚本生成一、HttpRunner简介参考文案:https://mubu.com/doc/2vXRWPx5i3c密码:hogwarts1.为什么要开发HttpRunner(1).工具多而且杂接口测试工具,性能测试工具(2).学习成本高(3).团队协作难风格迥异,整合
- 3D Gaussian Spaltting代码复现全流程与代码结构解读
一、代码复现流程以下部分将详细介绍3DGaussiansplatting的代码复现流程(在ubuntu18.04上训练模型,在windows10上使用SIBR_viewers查看)1、首先在GitHub-graphdeco-inria/gaussian-splatting:Originalreferenceimplementationof"3DGaussianSplattingforReal-Ti
- 神经网络初步学习3——数据与损失
X Y O
神经网络学习人工智能
一、传统机器学习与神经网络前言:该部分需要一定的机器学习与数学基础(很浅的基础),如果有不理解的地方可以自行查阅。(1)区别这里不妨以图像识别为例子:(1)在传统的机器学习视角中:我们需要人工手动去设置并提取我们的特征量,例如常见的SIFT、SURF和HOG等,随后需要我们选择合适的分类器(例如:SVM、KNN等分类器),接着把我们的参数训练出来。(2)而在神经网络的视角中:我们只需要把图片喂给它
- 初始CNN(卷积神经网络)
超龄超能程序猿
机器学习cnn人工智能神经网络
卷积神经网络(ConvolutionalNeuralNetwork,简称CNN)作为深度学习的重要分支,在图像识别、目标检测、语义分割等领域大放异彩。无论是手机上的人脸识别解锁,还是自动驾驶汽车对道路和行人的识别,背后都离不开CNN的强大能力一、CNN诞生的背景与意义在CNN出现之前,传统的图像识别方法主要依赖人工提取特征,例如使用SIFT(尺度不变特征变换)、HOG(方向梯度直方图)等算法。这些
- 喜讯 | Navicat 蝉联 2025 年 DBTA 100 强名单
Navicat中国
Navicat17焕新上市navicat数据库
Navicat在“DBTA1002025-数据领域最重要的公司”榜单中获得表彰。该奖项旨在表彰在数据管理与分析领域的领先创新者。数据库趋势与应用集团出版人TomHogan表示:“企业正寻求扩大人工智能的应用范围,采用新的技术与应用,增加数据分析/商业智能的使用,并对现有应用进行现代化改造”,“每年,《数据库趋势与应用》杂志都会推出DBTA100榜单,旨在表彰具有创新精神、能够为客户带来新产品新体验
- OpenCV中DPM(Deformable Part Model)目标检测类cv::dpm::DPMDetector
村北头的码农
OpenCVopencv目标检测人工智能
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述OpenCV中用于基于可变形部件模型(DPM)的目标检测器,主要用于行人、人脸等目标的检测。它是一种传统的基于特征的目标检测方法,不依赖深度学习,而是使用HOG特征+部件模型来进行检测。示例代码#include#include#includeusingnamesp
- Python与Dlib库实现人脸技术实战
西域情歌
本文还有配套的精品资源,点击获取简介:本项目详细说明了如何使用Python结合Dlib库实现人脸检测、识别、数量检测和距离检测。利用Dlib提供的机器学习算法和计算机视觉功能,包括HOG特征检测、级联分类器、面部特征向量模型和关键点预测等,项目能够快速准确地在图像中检测和识别人脸。此外,还介绍了如何统计图像中的人脸数量以及如何计算人脸之间的距离。通过实际代码资源,开发者能够掌握实时人脸技术的应用,
- Python dlib(HOG+SVM)人脸识别总结
程序媛一枚~
人脸识别python支持向量机开发语言读书笔记人脸检测识别
Pythondlib(HOG+SVM)人脸识别总结面部标志检测dlib68点(HOG+SVM),194点人脸识别模型,包括口(外嘴唇,内嘴唇),鼻,眉毛(左右眉),眼睛(左右眼),下鄂5点面部标志检测器(左眼2点,右眼2点,鼻子1点)面部对齐更高效眨眼检测ear眨眼瞬间达到0疲劳驾驶检测—连续帧ear面部对齐眼睛连线反正切获取旋转角度,期望图像眼睛横长度计算比率左眼计算右眼相对坐标眼睛横中心点作为
- 基于MATLAB图像特征识别及提取实现图像分类
jghhh01
机器学习算法人工智能
基于MATLAB的图形处理程序,可以进行图像特征识别及提取,进而实现图像分类。hog_svm.m,2276svm_images/test_image/1.jpg,20980svm_images/test_image/2.jpg,18246svm_images/test_image/3.jpg,13835svm_images/test_image/4.jpg,18539svm_images/test
- 【2025年软考中级】第三章数据结构3.4 数组与矩阵
houliabc
数据结构矩阵线性代数
文章目录数组与矩阵数组数组的基本概念数组的存储与地址计算行优先存储列优先存储地址计算图示矩阵矩阵的基本概念稀疏矩阵的存储三元组表(TripletTable)十字链表(OrthogonalList)特殊矩阵的压缩存储数组与矩阵数组数组的基本概念数组是定长线性表在维度上的扩展,本质是线性表的嵌套结构(线性表中的元素本身又是一个线性表)。其核心特性包括:同构性:所有数据元素类型相同、结构一致(如二维数组
- React系列文章之DVA
隐形人007
前端reactdvaredux-sagareact.js前端前端框架
前言提示:本文章来自珠峰培训周啸天老师的视频讲解总结视频地址:114.关于dva-cli和roadhog的使用_哔哩哔哩_bilibilidva:https://github.com/dvajs/dva/tree/master/docs/api「官网好像打不开」antd:全局化配置ConfigProvider-AntDesignredux-saga:高级·Redux-Saga一、dva脚手架1、创
- PostHog 的核心原理
草明
运维PosHogop
“事件驱动的数据采集+本地部署的分析系统+全栈可观测能力”下面是对PostHog工作原理的详细拆解,从架构层次到数据流转流程,并涵盖其核心模块。架构总览PostHog通常由以下几个关键组件构成:用户前端→PostHogJSSDK/API→IngestionPipeline→Kafka(事件队列)↓PostgreSQL/ClickHouse(事件存储)↓后端处理服务+插件系统+分析引擎↓WebUI/
- 【OpenCV人脸识别】基于深度学习(Dlib+HOG特征)的人脸识别——QT(C++)+Linux
1.人脸检测工具概述1.DlibDlib是一个开源的C++机器学习和计算机视觉库,用于解决多种任务,包括图像处理、计算机视觉、机器学习、数据分析等。Dlib提供了一系列工具和算法,可用于开发各种应用,从人脸检测和识别,到对象检测、形状预测、图像分类等。以下是Dlib主要的特点和功能:人脸检测和识别:Dlib提供了高性能的人脸检测器,基于HOG特征和深度学习模型。它还包括面部关键点检测和人脸识别的功
- 全景图拼接和视频行人检测(Python + opencv)
weixin-Vip1104z
程序员opencv音视频python
3.根据关键点特征和描述符,对两张图像进行匹配,得到若干匹配点对,并移除错误匹配4.使用Ransac算法和匹配的特征来估计单应矩阵(homographymatrix)5.通过单应矩阵来对图像进行仿射变换6.两图像拼接,重叠部分融合7.裁剪以获得美观的最终图像本次实验通过拍摄多组不同的图片来实现图像的拼接.#参考自https://cloud.tencent.com/developer/article
- 《Image Classification with Classic and Deep Learning Techniques》复现
几何心凉
IT优质推荐深度学习人工智能
1引言图像分类作为计算机视觉领域的核心任务,旨在将输入图像映射到离散化的语义类别标签,广泛应用于人脸识别、自动驾驶、医疗影像诊断、安防监控等场景。传统方法主要依赖手工设计的特征描述子(如SIFT、HOG、LBP)结合浅层模型(如BoVW、Fisher向量、SVM),以其可解释性和低资源消耗见长,但在端到端优化与高级表征能力方面不及深度学习。近年来,卷积神经网络(CNN)在大规模数据集(如Image
- OpenCV---Canny边缘检测
MzKyle
计算机视觉计算机视觉人工智能
一、基本概念与核心作用Canny边缘检测是计算机视觉中最经典的边缘检测算法之一,由JohnCanny于1986年提出。其核心目标是在噪声图像中提取精确、单像素宽、连续的边缘,广泛应用于:目标检测预处理(如Robomaster中灯条、装甲板的边缘提取)。轮廓分析(轮廓检测的前置步骤)。图像分割(通过边缘定位目标边界)。特征提取(如边缘方向直方图HOG)。与其他边缘检测算法的对比:算法优势劣势Cann
- Unity技术笔记:微缩小地图的一个简易版解决方案
大费~~~
unity游戏笔记小地图游戏引擎Camera组件
需求:假如在第一人称游戏中,需要做一个小地图。为了美观和简便选择做成正方形小地图拿来干嘛呢?用于实时检测自身相对于小地图的位置,顺便监测敌人相距自身的距离远近,从而方便玩家判断危险性和优先级。方案大致思路:用一个正投影Orthographic的相机(取消透视的那种相机),竖直正对场景朝下看。在敌人和主角脚下固定一个物体(比如球体)用一些显眼的颜色渲染,从而作为指示器,方便在地图中指示。通过一系列设
- golang的并发模型
u010927317
golang
1.C/C++与Go语言的“价值观”对照C的价值观摘录相信程序员:提供指针和指针运算,让C程序员天马行空的发挥自己动手,丰衣足食:提供一个很小的标准库,其余的让程序员自造保持语言的短小和简单性能优先C++价值观摘录支持多范式,不强迫程序员使用某个特定的范式不求完美,但求实用(并且立即可用)Go价值观OverallSimplicity全面的简单OrthogonalComposition正交组合Pre
- 29、魔法微前端——React 19 模块化架构
进取星辰
前端react.js架构
一、时空结界分割术(模块化架构设计)1.次元切割协议//主应用入口 constHogwartsMain=()=>{ const[subApps]=useState({ potion:React.lazy(()=>import('./PotionShop')), library:React.lazy(()=>import('./LibraryApp')), quidditch:React.la
- python3.7-3.11版本whl文件快速直接安装dlib库(无需安装cmake!!!)手把手教你安装
heyday_period
Python人脸识别dlib库python开发语言
dlib是一个包含多种机器学习和计算机视觉算法的C++开源工具包,其人脸识别功能主要依赖于以下技术人脸检测:使用基于HOG(HistogramofOrientedGradients,方向梯度直方图)特征和级联分类器的方法。HOG特征能够有效地描述图像中的边缘和纹理信息,而级联分类器是一个多层分类器,通过级联方式提高检测精度。1人脸特征提取:利用深度学习技术,特别是29层的卷积神经网络(CNN)。
- Java大厂面试实战:Spring Cloud、Kafka、Spring Security核心技术深度解析
xbhog
SpringCloudKafkaSpringSecurityMyBatisJunit5
模拟面试情景面试官:请描述SpringCloud中如何实现服务间负载均衡?xbhog:通过Ribbon和RestTemplate的集成,在调用服务时从Eureka注册中心获取服务实例列表,结合内置的策略(轮询/随机)选择目标节点,并通过Retry机制处理失败。例如配置@LoadBalanced的RestTemplate来实现代理请求。面试官(微笑):不错。那服务雪崩如何预防?xbhog:采用Hys
- Java面试深度解密:Spring Boot、Redis、日志优化、JUnit5及Kafka事务核心技术解析
xbhog
SpringBootRedisKafkaLogbackJunit5
模拟面试实战面试官:请解释SpringBoot的自动配置原理?哪些关键注解参与了这一过程?xbhog:SpringBoot通过@AutoConfiguration标记核心配置类,通过@ConditonalOnClass和@ConditionalOnMissingBean判断依赖是否存在并自动注入bean。实现原理涉及SpringFactoriesLoader加载META-INF/spring.fa
- nethogs 网络监控 命令详解
lswzw
网络linux
Linux下nethogs命令详解与实际案例nethogs是一款基于命令行的网络流量监控工具,能够按进程/用户分组统计带宽使用情况,帮助用户快速定位异常流量源。与其他网络监控工具不同,nethogs直接关联流量到具体进程,无需依赖特殊内核模块,非常适合快速排查网络阻塞问题。它提供直观的实时监控界面,显示每个进程的发送和接收流量,支持多种单位切换和排序方式。通过灵活的参数组合,用户可以精准监控特定网
- 基于深度学习的鲜花图像分类系统的设计与实现
源码空间站TH
人工智能人工智能课程设计pythoncnn鲜花图像分类系统毕业设计深度学习
1.项目总览1.1背景与动机现实生活中,鲜花电商、园艺大棚、智能零售柜都需要对花卉品种进行快速识别,以便定价、库存管理或生长环境调控。传统基于形态学的算法(颜色直方图、HOG+SVM等)在多品种、复杂光照背景下鲁棒性差。利用深度学习卷积神经网络提取大规模数据特征,可显著提升识别精度。1.2目标功能目标:输入任何一张含单朵鲜花的照片,系统输出花卉类别及置信度;支持单张、本地批量、在线HTTP以及桌面
- 目标检测的图像特征提取
勇往直前的流浪刀客
CV图像特征提取
目标检测的图像特征提取之(一)HOG特征1、HOG特征:方向梯度直方图(HistogramofOrientedGradient,HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。它通过计算和统计图像局部区域的梯度方向直方图来构成特征。Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功。需要提醒的是,HOG+SVM进行行人检测的方法是法国研究
- Java大厂硬核面试:Flink流处理容错、Pomelo JVM调优、MyBatis二级缓存穿透防护与Kubernetes服务网格实战解析
xbhog
Java面试FlinkKubernetesMyBatisSpringCloudWebSocketGraalVM
第二幕:系统架构设计面试官:设计一个处理10万+QPS的秒杀系统需要的技术方案和技术选型xbhog:采用基础架构:存储层:Redis限流+分布式锁服务层:Sentinel流量控制消息层:RocketMQ事务消息保证最终一致性关键设计:库存扣减使用Redission的MultiOperation实现原子操作通过SpringCloudGateway的自定义过滤器实现用户身份认证网关层拦截面试官:Kub
- 基于自主大型语言模型代理的AIoT智能家居
神一样的老师
论文阅读分享物联网语言模型智能家居人工智能
中文标题:基于自主大型语言模型代理的AIoT智能家居英文标题:AIoTSmartHomeviaAutonomousLLMAgents作者信息DmitriyRivkin,FrancoisHogan,AmalFeriani,AbhisekKonar,AdamSigal,XueLiu,GregoryDudek论文出处《IEEEInternetofThingsJournal》,第12卷,第3期,2025年
- 互联网大厂Java面试实战:Spring Boot自动配置、Kafka分区策略、Spring Security认证流程、MyBatis缓存机制与Prometheus监控排错
xbhog
Java面试题SpringBootKafkaSpringSecurityMyBatisPrometheus
第一轮面试面试官:请说明SpringBoot的自动配置机制如何实现,以application.properties为例说明样例配置生效过程。xbhog:SpringBoot自动配置主要依赖@Configuration、@ConditionalOnXXX注解链以及SpringFactoriesLoader机制。当SpringBoot应用启动时通过classpath扫描META-INF/spring.
- 关于旗正规则引擎下载页面需要弹窗保存到本地目录的问题
何必如此
jsp超链接文件下载窗口
生成下载页面是需要选择“录入提交页面”,生成之后默认的下载页面<a>标签超链接为:<a href="<%=root_stimage%>stimage/image.jsp?filename=<%=strfile234%>&attachname=<%=java.net.URLEncoder.encode(file234filesourc
- 【Spark九十八】Standalone Cluster Mode下的资源调度源代码分析
bit1129
cluster
在分析源代码之前,首先对Standalone Cluster Mode的资源调度有一个基本的认识:
首先,运行一个Application需要Driver进程和一组Executor进程。在Standalone Cluster Mode下,Driver和Executor都是在Master的监护下给Worker发消息创建(Driver进程和Executor进程都需要分配内存和CPU,这就需要Maste
- linux上独立安装部署spark
daizj
linux安装spark1.4部署
下面讲一下linux上安装spark,以 Standalone Mode 安装
1)首先安装JDK
下载JDK:jdk-7u79-linux-x64.tar.gz ,版本是1.7以上都行,解压 tar -zxvf jdk-7u79-linux-x64.tar.gz
然后配置 ~/.bashrc&nb
- Java 字节码之解析一
周凡杨
java字节码javap
一: Java 字节代码的组织形式
类文件 {
OxCAFEBABE ,小版本号,大版本号,常量池大小,常量池数组,访问控制标记,当前类信息,父类信息,实现的接口个数,实现的接口信息数组,域个数,域信息数组,方法个数,方法信息数组,属性个数,属性信息数组
}
&nbs
- java各种小工具代码
g21121
java
1.数组转换成List
import java.util.Arrays;
Arrays.asList(Object[] obj); 2.判断一个String型是否有值
import org.springframework.util.StringUtils;
if (StringUtils.hasText(str)) 3.判断一个List是否有值
import org.spring
- 加快FineReport报表设计的几个心得体会
老A不折腾
finereport
一、从远程服务器大批量取数进行表样设计时,最好按“列顺序”取一个“空的SQL语句”,这样可提高设计速度。否则每次设计时模板均要从远程读取数据,速度相当慢!!
二、找一个富文本编辑软件(如NOTEPAD+)编辑SQL语句,这样会很好地检查语法。有时候带参数较多检查语法复杂时,结合FineReport中生成的日志,再找一个第三方数据库访问软件(如PL/SQL)进行数据检索,可以很快定位语法错误。
- mysql linux启动与停止
墙头上一根草
如何启动/停止/重启MySQL一、启动方式1、使用 service 启动:service mysqld start2、使用 mysqld 脚本启动:/etc/inint.d/mysqld start3、使用 safe_mysqld 启动:safe_mysqld&二、停止1、使用 service 启动:service mysqld stop2、使用 mysqld 脚本启动:/etc/inin
- Spring中事务管理浅谈
aijuans
spring事务管理
Spring中事务管理浅谈
By Tony Jiang@2012-1-20 Spring中对事务的声明式管理
拿一个XML举例
[html]
view plain
copy
print
?
<?xml version="1.0" encoding="UTF-8"?>&nb
- php中隐形字符65279(utf-8的BOM头)问题
alxw4616
php中隐形字符65279(utf-8的BOM头)问题
今天遇到一个问题. php输出JSON 前端在解析时发生问题:parsererror.
调试:
1.仔细对比字符串发现字符串拼写正确.怀疑是 非打印字符的问题.
2.逐一将字符串还原为unicode编码. 发现在字符串头的位置出现了一个 65279的非打印字符.
 
- 调用对象是否需要传递对象(初学者一定要注意这个问题)
百合不是茶
对象的传递与调用技巧
类和对象的简单的复习,在做项目的过程中有时候不知道怎样来调用类创建的对象,简单的几个类可以看清楚,一般在项目中创建十几个类往往就不知道怎么来看
为了以后能够看清楚,现在来回顾一下类和对象的创建,对象的调用和传递(前面写过一篇)
类和对象的基础概念:
JAVA中万事万物都是类 类有字段(属性),方法,嵌套类和嵌套接
- JDK1.5 AtomicLong实例
bijian1013
javathreadjava多线程AtomicLong
JDK1.5 AtomicLong实例
类 AtomicLong
可以用原子方式更新的 long 值。有关原子变量属性的描述,请参阅 java.util.concurrent.atomic 包规范。AtomicLong 可用在应用程序中(如以原子方式增加的序列号),并且不能用于替换 Long。但是,此类确实扩展了 Number,允许那些处理基于数字类的工具和实用工具进行统一访问。
 
- 自定义的RPC的Java实现
bijian1013
javarpc
网上看到纯java实现的RPC,很不错。
RPC的全名Remote Process Call,即远程过程调用。使用RPC,可以像使用本地的程序一样使用远程服务器上的程序。下面是一个简单的RPC 调用实例,从中可以看到RPC如何
- 【RPC框架Hessian一】Hessian RPC Hello World
bit1129
Hello world
什么是Hessian
The Hessian binary web service protocol makes web services usable without requiring a large framework, and without learning yet another alphabet soup of protocols. Because it is a binary p
- 【Spark九十五】Spark Shell操作Spark SQL
bit1129
shell
在Spark Shell上,通过创建HiveContext可以直接进行Hive操作
1. 操作Hive中已存在的表
[hadoop@hadoop bin]$ ./spark-shell
Spark assembly has been built with Hive, including Datanucleus jars on classpath
Welcom
- F5 往header加入客户端的ip
ronin47
when HTTP_RESPONSE {if {[HTTP::is_redirect]}{ HTTP::header replace Location [string map {:port/ /} [HTTP::header value Location]]HTTP::header replace Lo
- java-61-在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差. 求所有数对之差的最大值。例如在数组{2, 4, 1, 16, 7, 5,
bylijinnan
java
思路来自:
http://zhedahht.blog.163.com/blog/static/2541117420116135376632/
写了个java版的
public class GreatestLeftRightDiff {
/**
* Q61.在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差。
* 求所有数对之差的最大值。例如在数组
- mongoDB 索引
开窍的石头
mongoDB索引
在这一节中我们讲讲在mongo中如何创建索引
得到当前查询的索引信息
db.user.find(_id:12).explain();
cursor: basicCoursor 指的是没有索引
&
- [硬件和系统]迎峰度夏
comsci
系统
从这几天的气温来看,今年夏天的高温天气可能会维持在一个比较长的时间内
所以,从现在开始准备渡过炎热的夏天。。。。
每间房屋要有一个落地电风扇,一个空调(空调的功率和房间的面积有密切的关系)
坐的,躺的地方要有凉垫,床上要有凉席
电脑的机箱
- 基于ThinkPHP开发的公司官网
cuiyadll
行业系统
后端基于ThinkPHP,前端基于jQuery和BootstrapCo.MZ 企业系统
轻量级企业网站管理系统
运行环境:PHP5.3+, MySQL5.0
系统预览
系统下载:http://www.tecmz.com
预览地址:http://co.tecmz.com
各种设备自适应
响应式的网站设计能够对用户产生友好度,并且对于
- Transaction and redelivery in JMS (JMS的事务和失败消息重发机制)
darrenzhu
jms事务承认MQacknowledge
JMS Message Delivery Reliability and Acknowledgement Patterns
http://wso2.com/library/articles/2013/01/jms-message-delivery-reliability-acknowledgement-patterns/
Transaction and redelivery in
- Centos添加硬盘完全教程
dcj3sjt126com
linuxcentoshardware
Linux的硬盘识别:
sda 表示第1块SCSI硬盘
hda 表示第1块IDE硬盘
scd0 表示第1个USB光驱
一般使用“fdisk -l”命
- yii2 restful web服务路由
dcj3sjt126com
PHPyii2
路由
随着资源和控制器类准备,您可以使用URL如 http://localhost/index.php?r=user/create访问资源,类似于你可以用正常的Web应用程序做法。
在实践中,你通常要用美观的URL并采取有优势的HTTP动词。 例如,请求POST /users意味着访问user/create动作。 这可以很容易地通过配置urlManager应用程序组件来完成 如下所示
- MongoDB查询(4)——游标和分页[八]
eksliang
mongodbMongoDB游标MongoDB深分页
转载请出自出处:http://eksliang.iteye.com/blog/2177567 一、游标
数据库使用游标返回find的执行结果。客户端对游标的实现通常能够对最终结果进行有效控制,从shell中定义一个游标非常简单,就是将查询结果分配给一个变量(用var声明的变量就是局部变量),便创建了一个游标,如下所示:
> var
- Activity的四种启动模式和onNewIntent()
gundumw100
android
Android中Activity启动模式详解
在Android中每个界面都是一个Activity,切换界面操作其实是多个不同Activity之间的实例化操作。在Android中Activity的启动模式决定了Activity的启动运行方式。
Android总Activity的启动模式分为四种:
Activity启动模式设置:
<acti
- 攻城狮送女友的CSS3生日蛋糕
ini
htmlWebhtml5csscss3
在线预览:http://keleyi.com/keleyi/phtml/html5/29.htm
代码如下:
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>攻城狮送女友的CSS3生日蛋糕-柯乐义<
- 读源码学Servlet(1)GenericServlet 源码分析
jzinfo
tomcatWebservlet网络应用网络协议
Servlet API的核心就是javax.servlet.Servlet接口,所有的Servlet 类(抽象的或者自己写的)都必须实现这个接口。在Servlet接口中定义了5个方法,其中有3个方法是由Servlet 容器在Servlet的生命周期的不同阶段来调用的特定方法。
先看javax.servlet.servlet接口源码:
package
- JAVA进阶:VO(DTO)与PO(DAO)之间的转换
snoopy7713
javaVOHibernatepo
PO即 Persistence Object VO即 Value Object
VO和PO的主要区别在于: VO是独立的Java Object。 PO是由Hibernate纳入其实体容器(Entity Map)的对象,它代表了与数据库中某条记录对应的Hibernate实体,PO的变化在事务提交时将反应到实际数据库中。
实际上,这个VO被用作Data Transfer
- mongodb group by date 聚合查询日期 统计每天数据(信息量)
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 1 */
{
"_id" : ObjectId("557ac1e2153c43c320393d9d"),
"msgType" : "text",
"sendTime" : ISODate("2015-06-12T11:26:26.000Z")
- java之18天 常用的类(一)
Luob.
MathDateSystemRuntimeRundom
System类
import java.util.Properties;
/**
* System:
* out:标准输出,默认是控制台
* in:标准输入,默认是键盘
*
* 描述系统的一些信息
* 获取系统的属性信息:Properties getProperties();
*
*
*
*/
public class Sy
- maven
wuai
maven
1、安装maven:解压缩、添加M2_HOME、添加环境变量path
2、创建maven_home文件夹,创建项目mvn_ch01,在其下面建立src、pom.xml,在src下面简历main、test、main下面建立java文件夹
3、编写类,在java文件夹下面依照类的包逐层创建文件夹,将此类放入最后一级文件夹
4、进入mvn_ch01
4.1、mvn compile ,执行后会在