我们在用pandas类似groupby来使用多重index时,有时想要对多个level中的某个index对应的行进行操作,就需要在dataframe中找到该index对应的行,在单层index中我们可以方便的使用df.loc[index]来选择,在多重Index中我们可以利用的类似的思路,然而其中也有一些小坑,记录如下。
首先创建一个dataframe数据
df = pd.DataFrame({'class':['A','A','A','B','B','B','C','C'],
'id':['a','b','c','a','b','c','a','b'],
'value':[1,2,3,4,5,6,7,8]})
通过set_index设为多重索引
df = df.set_index(['class','id'])
这里同样使用loc定位
df.loc[('A',slice(None)),:]
各参数的解释如下:
‘:’,用来指定dataframe任意的列
df.loc[(slice(None),'a'),:]
前面的例子对应的index列为数字或字母,是有序的,接下来我们看看index列为中文的情况。
df2 = pd.DataFrame({'课程':['语文','语文','数学','数学'],'得分':['最高','最低','最高','最低'],'分值':[90,50,100,60]})
df2 = df2.set_index(['课程','得分'])
df2.loc[('语文',slice(None)),:]
我们进行同样的操作,这时会发现提示出错:
UnsortedIndexError: 'MultiIndex Slicing requires the index to be fully lexsorted tuple len (2), lexsort depth (0)'
这是因为此时的index无法进行排序,在pandas文档中提到:Furthermore if you try to index something that is not fully lexsorted, this can raise:
我们可以通过 df2.index.is_lexsorted()
来检查index是否有序,
In[1]: df2.index.is_lexsorted()
out[1]: False
接下来,我们尝试对Index进行排序。(排序时要在level里指定index名)
df2 = df2.sort_index(level='课程')
df2.loc[('语文',slice(None)),:]
参考文献:pandas-docs-MultiIndex / Advanced Indexing