Java集合框架常见面试题

Collection关系

1. List

Arraylist: Object数组
Vector: Object数组
LinkedList: 双向链表(JDK1.6之前为循环链表,JDK1.7取消了循环)

2. Set

HashSet(无序,唯一): 基于 HashMap 实现的,底层采用 HashMap 来保存元素
LinkedHashSet: LinkedHashSet 继承于 HashSet,并且其内部是通过 LinkedHashMap 来实现的。有点类似于我们之前说的LinkedHashMap 其内部是基于 HashMap 实现一样,不过还是有一点点区别的
TreeSet(有序,唯一): 红黑树(自平衡的排序二叉树)

3.Map

HashMap: JDK1.8之前HashMap由数组+链表组成的,数组是HashMap的主体,链表则是主要为了解决哈希冲突而存在的(“拉链法”解决冲突)。JDK1.8以后在解决哈希冲突时有了较大的变化,当链表长度大于阈值(默认为8)时,将链表转化为红黑树,以减少搜索时间
LinkedHashMap: LinkedHashMap 继承自 HashMap,所以它的底层仍然是基于拉链式散列结构即由数组和链表或红黑树组成。另外,LinkedHashMap 在上面结构的基础上,增加了一条双向链表,使得上面的结构可以保持键值对的插入顺序。同时通过对链表进行相应的操作,实现了访问顺序相关逻辑。
Hashtable: 数组+链表组成的,数组是 HashMap 的主体,链表则是主要为了解决哈希冲突而存在的
TreeMap: 红黑树(自平衡的排序二叉树)

说说List,Set,Map三者的区别?

List(顺序): List接口存储,不唯一
Set(唯一): 不允许重复的集合
Map(key,value): 使用键值对存储。Map会维护与Key有关联的值。两个Key可以引用相同的对象,但Key不能重复。

Arraylist 与 LinkedList 区别?

  1. 是否保证线程安全: ArrayList 和 LinkedList 都是不同步的,也就是不保证线程安全
  2. 底层数据结构: Arraylist 底层使用的是 Object 数组;LinkedList 底层使用的是 双向链表 数据结构(JDK1.6之前为循环链表,JDK1.7取消了循环。注意双向链表和双向循环链表的区别,下面有介绍到!)
  3. 插入和删除是否受元素位置的影响: ① ArrayList 采用数组存储,所以插入和删除元素的时间复杂度受元素位置的影响。 比如:执行add(E e) 方法的时候, ArrayList 会默认在将指定的元素追加到此列表的末尾,这种情况时间复杂度就是O(1)。但是如果要在指定位置 i 插入和删除元素的话(add(int index, E element) )时间复杂度就为 O(n-i)。因为在进行上述操作的时候集合中第 i 和第 i 个元素之后的(n-i)个元素都要执行向后位/向前移一位的操作。 ② LinkedList 采用链表存储,所以插入,删除元素时间复杂度不受元素位置的影响,都是近似 O(1)而数组为近似 O(n)。
  4. 否支持快速随机访问: LinkedList 不支持高效的随机元素访问,而 ArrayList 支持。快速随机访问就是通过元素的序号快速获取元素对象(对应于get(int index) 方法)。
  5. 内存空间占用: ArrayList的空间浪费主要体现在在list列表的结尾会预留一定的容量空间,而LinkedList的空间花费则体现在它的每一个元素都需要消耗比ArrayList更多的空间(因为要存放直接后继和直接前驱以及数据)。

在 binarySearch()方法中,它要判断传入的list 是否 RamdomAccess 的实例,如果是,调用indexedBinarySearch()方法,如果不是,那么调用iteratorBinarySearch()方法

 public static 
    int binarySearch(List> list, T key) {
        if (list instanceof RandomAccess || list.size()

ArrayList 实现了 RandomAccess 接口, 而 LinkedList 没有实现。为什么呢?我觉得还是和底层数据结构有关!ArrayList 底层是数组,而 LinkedList 底层是链表。数组天然支持随机访问,时间复杂度为 O(1),所以称为快速随机访问。链表需要遍历到特定位置才能访问特定位置的元素,时间复杂度为 O(n),所以不支持快速随机访问。,ArrayList 实现了 RandomAccess 接口,就表明了他具有快速随机访问功能。 RandomAccess 接口只是标识,并不是说 ArrayList 实现 RandomAccess 接口才具有快速随机访问功能的!

下面再总结一下 list 的遍历方式选择:

补充内容:双向链表和双向循环链表

双向链表: 包含两个指针,一个prev指向前一个节点,一个next指向后一个节点。
Java集合框架常见面试题_第1张图片
双向循环链表: 最后一个节点的 next 指向head,而 head 的prev指向最后一个节点,构成一个环。
Java集合框架常见面试题_第2张图片

ArrayList 与 Vector 区别呢?为什么要用ArrayList取代Vector呢?

区别

Vector类的所有方法都是同步的。可以由两个线程安全地访问一个Vector对象、但是一个线程访问Vector的话代码要在同步操作上耗费大量的时间。
Arraylist不是同步的,所以在不需要保证线程安全时建议使用Arraylist。

说一说 ArrayList 的扩容机制吧

ArrayList扩容发生在add()方法调用的时候,下面是add()方法的源码:

public boolean add(E e) {
   //扩容
    ensureCapacityInternal(size + 1);  // Increments modCount!!
    elementData[size++] = e;
    return true;
}

根据意思可以看出ensureCapacityInternal()是用来扩容的,形参为最小扩容量,进入此方法后:

private void ensureCapacityInternal(int minCapacity) {
    ensureExplicitCapacity(calculateCapacity(elementData, minCapacity));
}

通过方法calculateCapacity(elementData, minCapacity)获取:

private static int calculateCapacity(Object[] elementData, int minCapacity) {
    //如果传入的是个空数组则最小容量取默认容量与minCapacity之间的最大值
    if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
        return Math.max(DEFAULT_CAPACITY, minCapacity);
    }
    return minCapacity;
}

ensureExplicitCapacity方法可以判断是否需要扩容:

 private void ensureExplicitCapacity(int minCapacity) {
          modCount++;
 
          // 如果最小需要空间比elementData的内存空间要大,则需要扩容
          if (minCapacity - elementData.length > 0)
              //扩容              grow(minCapacity);
      }

接下来重点来了,ArrayList扩容的关键方法grow():

private void grow(int minCapacity) {
          // 获取到ArrayList中elementData数组的内存空间长度
          int oldCapacity = elementData.length;
         // 扩容至原来的1.5倍
         int newCapacity = oldCapacity + (oldCapacity >> 1);
         // 再判断一下新数组的容量够不够,够了就直接使用这个长度创建新数组,
          // 不够就将数组长度设置为需要的长度
         if (newCapacity - minCapacity < 0)
             newCapacity = minCapacity;
         //若预设值大于默认的最大值检查是否溢出
         if (newCapacity - MAX_ARRAY_SIZE > 0)
             newCapacity = hugeCapacity(minCapacity);
         // 调用Arrays.copyOf方法将elementData数组指向新的内存空间时newCapacity的连续空间
         // 并将elementData的数据复制到新的内存空间
         elementData = Arrays.copyOf(elementData, newCapacity);
 }

从此方法中我们可以清晰的看出其实ArrayList扩容的本质就是计算出新的扩容数组的size后实例化,并将原有数组内容复制到新数组中去。

HashMap 和 Hashtable 的区别

1.线程是否安全: HashMap 是非线程安全的,HashTable 是线程安全的;HashTable 内部的方法基本都经过synchronized 修饰。(如果你要保证线程安全的话就使用 ConcurrentHashMap 吧!);
2.效率: 因为线程安全的问题,HashMap 要比 HashTable 效率高一点。另外,HashTable 基本被淘汰,不要在代码中使用它;
3.对Null key 和Null value的支持: HashMap 中,null 可以作为键,这样的键只有一个,可以有一个或多个键所对应的值为 null。。但是在 HashTable 中 put 进的键值只要有一个 null,直接抛出 NullPointerException。
4.初始容量大小和每次扩充容量大小的不同 : ①创建时如果不指定容量初始值,Hashtable 默认的初始大小为11,之后每次扩充,容量变为原来的2n+1。HashMap 默认的初始化大小为16。之后每次扩充,容量变为原来的2倍。②创建时如果给定了容量初始值,那么 Hashtable 会直接使用你给定的大小,而 HashMap 会将其扩充为2的幂次方大小(HashMap 中的tableSizeFor()方法保证,下面给出了源代码)。也就是说 HashMap 总是使用2的幂作为哈希表的大小,后面会介绍到为什么是2的幂次方。
5.底层数据结构: JDK1.8 以后的 HashMap 在解决哈希冲突时有了较大的变化,当链表长度大于阈值(默认为8)时,将链表转化为红黑树,以减少搜索时间。Hashtable 没有这样的机制。
HashMap 中带有初始容量的构造函数:

public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
this.loadFactor = loadFactor;
this.threshold = tableSizeFor(initialCapacity);
}
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}

下面这个方法保证了 HashMap 总是使用2的幂作为哈希表的大小。

 /**     * Returns a power of two size for the given target capacity.     */
    static final int tableSizeFor(int cap) {
        int n = cap - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }

ConcurrentHashMap 和 Hashtable 的区别

ConcurrentHashMap 和 Hashtable 的区别主要体现在实现线程安全的方式上不同

底层数据结构:

JDK1.7的 ConcurrentHashMap 底层采用 分段的数组+链表 实现,JDK1.8 采用的数据结构跟HashMap1.8的结构一样,数组+链表/红黑二叉树
Hashtable 和 JDK1.8 之前的 HashMap 的底层数据结构类似都是采用 数组+链表 的形式,数组是 HashMap 的主体,链表则是主要为了解决哈希冲突而存在的;

实现线程安全的方式(重要):

① 在JDK1.7的时候,ConcurrentHashMap(分段锁) 对整个数组进行了分割分段(Segment),每一把锁只锁容器其中一部分数据,多线程访问容器里不同数据段的数据,就不会存在锁竞争,提高并发访问率。 到了 JDK1.8 的时候已经摒弃了Segment的概念,而是直接用 Node 数组+链表+红黑树的数据结构来实现,并发控制使用 synchronized 和 CAS 来操作。(JDK1.6以后 对 synchronized锁做了很多优化) 整个看起来就像是优化过且线程安全的 HashMap,虽然在JDK1.8中还能看到 Segment 的数据结构,但是已经简化了属性,只是为了兼容旧版本;
② Hashtable(同一把锁) :使用 synchronized 来保证线程安全**,效率非常低下。当一个线程访问同步方法时,其他线程也访问同步方法,可能会进入阻塞或轮询状态,如使用 put 添加元素,另一个线程不能使用 put 添加元素,也不能使用 get,竞争会越来越激烈效率越低。

HashTable:

Java集合框架常见面试题_第3张图片

HashMap 和 HashSet区别

如果你看过 HashSet 源码的话就应该知道:HashSet 底层就是基于 HashMap 实现的。(HashSet 的源码非常非常少,因为除了 clone() 、writeObject()、readObject()是 HashSet 自己不得不实现之外,其他方法都是直接调用 HashMap 中的方法。
Java集合框架常见面试题_第4张图片

HashSet如何检查重复

当你把对象加入HashSet时,HashSet会先计算对象的hashcode值来判断对象加入的位置,同时也会与其他加入的对象的hashcode值作比较,如果没有相符的hashcode,HashSet会假设对象没有重复出现。但是如果发现有相同hashcode值的对象,这时会调用equals()方法来检查hashcode相等的对象是否真的相同。如果两者相同,HashSet就不会让加入操作成功。

hashCode()与equals()的相关规定:

1.如果两个对象相等,则hashcode一定也是相同的
2.两个对象相等,对两个equals方法返回true
3.两个对象有相同的hashcode值,它们也不一定是相等的
4.综上,equals方法被覆盖过,则hashCode方法也必须被覆盖
5.hashCode()的默认行为是对堆上的对象产生独特值。如果没有重写hashCode(),则该class的两个对象无论如何都不会相等(即使这两个对象指向相同的数据)。

==与equals的区别

1.==是判断两个变量或实例是不是指向同一个内存空间 equals是判断两个变量或实例所指向的内存空间的值是不是相同
2.==是指对内存地址进行比较 equals()是对字符串的内容进行比较
3.==指引用是否相同 equals()指的是值是否相同

comparable 和 Comparator的区别

comparable接口实际上是出自java.lang包 它有一个 compareTo(Object obj)方法用来排序

comparator接口实际上是出自 java.util 包它有一个compare(Object obj1, Object obj2)方法用来排序

一般我们需要对一个集合使用自定义排序时,我们就要重写compareTo()方法或compare()方法,当我们需要对某一个集合实现两种排序方式,比如一个song对象中的歌名和歌手名分别采用一种排序方法的话,我们可以重写compareTo()方法和使用自制的Comparator方法或者以两个Comparator来实现歌名排序和歌星名排序,第二种代表我们只能使用两个参数版的 Collections.sort().

Comparator定制排序

 ArrayList arrayList = new ArrayList();
        arrayList.add(-1);
        arrayList.add(3);
        arrayList.add(3);
        arrayList.add(-5);
        arrayList.add(7);
        arrayList.add(4);
        arrayList.add(-9);
        arrayList.add(-7);
        System.out.println("原始数组:");
        System.out.println(arrayList);
        // void reverse(List list):反转
        Collections.reverse(arrayList);
        System.out.println("Collections.reverse(arrayList):");
        System.out.println(arrayList);

        // void sort(List list),按自然排序的升序排序
        Collections.sort(arrayList);
        System.out.println("Collections.sort(arrayList):");
        System.out.println(arrayList);
        // 定制排序的用法
        Collections.sort(arrayList, new Comparator() {

            @Override
            public int compare(Integer o1, Integer o2) {
                return o2.compareTo(o1);
            }
        });
        System.out.println("定制排序后:");
        System.out.println(arrayList);

Output:
原始数组:
[-1, 3, 3, -5, 7, 4, -9, -7]
Collections.reverse(arrayList):
[-7, -9, 4, 7, -5, 3, 3, -1]
Collections.sort(arrayList):
[-9, -7, -5, -1, 3, 3, 4, 7]
定制排序后:
[7, 4, 3, 3, -1, -5, -7, -9]
重写compareTo方法实现按年龄来排序
// person对象没有实现Comparable接口,所以必须实现,这样才不会出错,才可以使treemap中的数据按顺序排列// 前面一个例子的String类已经默认实现了Comparable接口,详细可以查看String类的API文档,另外其他// 像Integer类等都已经实现了Comparable接口,所以不需要另外实现了
public class Person implements Comparable {
private String name;
private int age;

public Person(String name, int age) {
    super();
    this.name = name;
    this.age = age;
}

public String getName() {
    return name;
}

public void setName(String name) {
    this.name = name;
}

public int getAge() {
    return age;
}

public void setAge(int age) {
    this.age = age;
}

/**     * TODO重写compareTo方法实现按年龄来排序     */
@Override
public int compareTo(Person o) {
    // TODO Auto-generated method stub
    if (this.age > o.getAge()) {
        return 1;
    } else if (this.age < o.getAge()) {
        return -1;
    }
    return age;
}

}
public static void main(String[] args) {
TreeMap pdata = new TreeMap();
pdata.put(new Person(“张三”, 30), “zhangsan”);
pdata.put(new Person(“李四”, 20), “lisi”);
pdata.put(new Person(“王五”, 10), “wangwu”);
pdata.put(new Person(“小红”, 5), “xiaohong”);
// 得到key的值的同时得到key所对应的值
Set keys = pdata.keySet();
for (Person key : keys) {
System.out.println(key.getAge() + “-” + key.getName());

    }
}

Output:
5-小红
10-王五
20-李四
30-张三

重写compareTo方法实现按年龄来排序

// person对象没有实现Comparable接口,所以必须实现,这样才不会出错,才可以使treemap中的数据按顺序排列// 前面一个例子的String类已经默认实现了Comparable接口,详细可以查看String类的API文档,另外其他// 像Integer类等都已经实现了Comparable接口,所以不需要另外实现了

public  class Person implements Comparable {
    private String name;
    private int age;

    public Person(String name, int age) {
        super();
        this.name = name;
        this.age = age;
    }

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    public int getAge() {
        return age;
    }

    public void setAge(int age) {
        this.age = age;
    }

    /**     * TODO重写compareTo方法实现按年龄来排序     */
    @Override
    public int compareTo(Person o) {
        // TODO Auto-generated method stub
        if (this.age > o.getAge()) {
            return 1;
        } else if (this.age < o.getAge()) {
            return -1;
        }
        return age;
    }
}
    public static void main(String[] args) {
        TreeMap pdata = new TreeMap();
        pdata.put(new Person("张三", 30), "zhangsan");
        pdata.put(new Person("李四", 20), "lisi");
        pdata.put(new Person("王五", 10), "wangwu");
        pdata.put(new Person("小红", 5), "xiaohong");
        // 得到key的值的同时得到key所对应的值
        Set keys = pdata.keySet();
        for (Person key : keys) {
            System.out.println(key.getAge() + "-" + key.getName());

        }
    }

Output:
5-小红
10-王五
20-李四
30-张三

你可能感兴趣的:(face)