#includeintmain(){//输入函数intn,m,i,j;inta;//把a定义成一个数组反而就出现错误了,也就是运行错误//在这里a代表的是一个单独的word字符scanf("%d%d\n",&m,&n);intnum[101];ints=0,p=0;//把内存里面的值全部赋值为-1for(i=0;i
机器翻译编程
一行代码通万物
机器翻译人工智能自然语言处理
这个机器翻译程序的主要功能和使用说明:功能特点:支持多种语言之间的互译能够自动检测源语言可以列出所有支持的语言及其代码提供简单的命令行交互界面使用前需要安装依赖库:pipinstallgoogletrans==4.0.0-rc1使用方法:运行程序后,根据菜单选择操作选择1可以查看所有支持的语言选择2可以进行翻译,输入要翻译的文本和目标语言代码选择3退出程序注意事项:该程序使用的是Google翻译的
Transformer:颠覆NLP的自注意力革命
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpythontransformer自然语言处理深度学习
Transformer:颠覆NLP的自注意力革命Transformer是自然语言处理领域中极具影响力的深度学习模型架构,以下是对其的详细介绍:提出背景与应用:2017年,Vaswani等人在《AttentionIsAllYouNeed》论文中首次提出Transformer架构,它主要用于处理序列到序列的任务,如机器翻译、文本生成等。核心原理:文本生成的Transformer模型原理是“预测下一个词
RAG 助力教育个性化:重塑学习体验的科技引擎
hy098543
学习科技
一、引言1.1研究背景与动机随着自然语言处理(NLP)技术的飞速发展,大语言模型(LLM)在众多任务中展现出了强大的能力,如文本生成、问答系统和机器翻译等。然而,传统的大语言模型在知识存储和更新方面存在一定的局限性。一方面,模型的知识主要依赖于预训练阶段所接触的数据,这导致其知识更新滞后,难以应对快速变化的现实世界信息。例如,对于一些新出现的事件、技术或研究成果,模型可能无法及时给出准确的信息。另
第 20 课时:GPU 管理和 Device Plugin 工作机制(车漾)
阿里云云原生
CNCFX阿里巴巴云原生技术公开课阿里云KubernetesCNCF专家团队CNCF专家团队CNCF专家团队Kubernetes
本文将主要分享以下几个方面的内容:需求来源GPU的容器化Kubernetes的GPU管理工作原理课后思考与实践需求来源2016年,随着AlphaGo的走红和TensorFlow项目的异军突起,一场名为AI的技术革命迅速从学术圈蔓延到了工业界,所谓AI革命从此拉开了帷幕。经过三年的发展,AI有了许许多多的落地场景,包括智能客服、人脸识别、机器翻译、以图搜图等功能。其实机器学习或者说是人工智能,并不是
CPO:对比偏好优化—突破大型语言模型在机器翻译中的性能边界
AI专题精讲
强化学习人工智能强化学习AI技术应用
温馨提示:本篇文章已同步至"AI专题精讲"CPO:对比偏好优化—突破大型语言模型在机器翻译中的性能边界摘要中等规模的大型语言模型(LLMs),如参数量为7B或13B的模型,在机器翻译(MT)任务中展现出良好性能。然而,它们仍未能达到最先进的传统编码器-解码器翻译模型,或是如GPT-4(OpenAI,2023)等更大规模LLM的表现。在本研究中,我们致力于弥合这一性能差距。我们首先评估了在机器翻译任
高效批量单词翻译工具的设计与应用
本文还有配套的精品资源,点击获取简介:在信息技术飞速发展的今天,批量单词翻译工具通过计算机的数据处理能力,大大提高了语言学习和文字处理的效率。用户通过简单输入单词列表到一个文本文件,并运行翻译程序,即可获得翻译结果并保存至指定文件。该工具集成了内置或外部翻译引擎,利用自然语言处理技术实现快速准确的翻译,并可能提供词性识别等附加功能。尽管机器翻译无法完全取代人工校对,但它为用户提供了一种高效的翻译解
深度探索:现代翻译技术的核心算法与实践(第一篇)
软考和人工智能学堂
#DeepSeek快速入门人工智能#深度学习算法
引言:翻译技术的演进之路从早期的基于规则的机器翻译(RBMT)到统计机器翻译(SMT),再到如今主导行业的神经机器翻译(NMT),翻译技术已经走过了漫长的发展道路。现代翻译系统不仅能够处理简单的句子,还能理解上下文、识别领域术语,甚至捕捉微妙的文化差异。本系列文章将带您深入探索现代翻译技术的核心算法与实践。作为开篇之作,本文将重点介绍神经机器翻译的基础架构——序列到序列(Seq2Seq)模型,并通
Transformer模型架构深度讲解
Transformer是一种在自然语言处理(NLP)和深度学习中非常重要的模型架构。它首次由Vaswani等人于2017年提出,主要应用于序列到序列的任务(如机器翻译、文本生成、摘要生成等)。Transformer模型与传统的RNN(循环神经网络)和LSTM(长短时记忆网络)不同,它不依赖于时间步的顺序处理,而是完全基于“注意力机制”进行计算,这使得它在训练速度、并行化能力和长期依赖问题的处理上具
【零基础学AI】第27讲:注意力机制(Attention) - 机器翻译实战
1989
0基础学AI人工智能机器翻译自然语言处理pythontensorflow机器学习神经网络
本节课你将学到理解注意力机制的核心思想掌握注意力计算的数学原理实现基于注意力机制的Seq2Seq模型构建英语到法语的神经翻译系统开始之前环境要求Python3.8+需要安装的包:tensorflow==2.8.0numpy==1.21.0matplotlib==3.4.0pandas==1.3.0前置知识RNN/LSTM原理(第26讲)序列数据处理(第26讲)自然语言处理基础(第14讲)核心概念为
Teacher Forcing--------一种用于序列生成任务的训练技巧
AI扶我青云志
自然语言处理人工智能
好的,我们来详细介绍一下TeacherForcing,这是一种在训练序列生成模型(如循环神经网络RNN、长短期记忆网络LSTM、门控循环单元GRU、以及后来的Transformer)时常用的重要技术。核心概念目标:训练一个模型,使其能够根据给定的输入序列(如前一个词、图像编码、时间步数据等)预测下一个输出元素(如下一个词、下一个音符、下一个时间点的值等)。这在机器翻译、文本摘要、对话生成、语音合成
聚焦的伟力:注意力机制与Transformer的创世纪
田园Coder
人工智能科普人工智能科普
当LSTM和GRU凭借其精密的门控系统,成功驯服了时间的长河,让神经网络能够跨越数十甚至数百步记住关键信息,并在机器翻译、文本生成等领域大放异彩时,一个看似微小却影响深远的瓶颈逐渐浮出水面,尤其是在序列到序列(Seq2Seq)框架中。在标准的Seq2Seq模型(如用于神经机器翻译)里,编码器(通常是一个RNN如LSTM)需要将整个输入序列(如一个英语句子)的信息压缩成一个固定长度的上下文向量(Co
循环神经网络(RNN):序列数据处理的强大工具
LNL13
rnn人工智能深度学习
在人工智能和机器学习的广阔领域中,处理和理解序列数据一直是一个重要且具有挑战性的任务。循环神经网络(RecurrentNeuralNetwork,RNN)作为一类专门设计用于处理序列数据的神经网络,在诸多领域展现出了强大的能力。从自然语言处理中的文本生成、机器翻译,到时间序列分析中的股票价格预测、天气预测等,RNN都发挥着关键作用。本文将深入探讨RNN的工作原理、架构特点、训练方法、常见类型以及其
AI大模型定义与应用概述
水云桐程序员
人工智能ai大模型
AI大模型,也成为基础模型或大规模预训练模型,指的是在海量数据上通过深度学习技术进行预训练的超大型人工智能模型。常见类型大型语言模型:这是目前最主流和成熟的大模型类型。擅长文本生成、文本理解、机器翻译、对话系统、代码生成与解释等。代表案例:GPT系列、通义千问、文心一言、KimiChat等。多模态大模型:擅长同时处理和生成多种模态的信息,如文生图、图生文、图文问答、视频理解、音频生成等。代表案例:
大模型算法工程师面试宝典:精选面试题及参考答案全解析,助你备战AI算法工程师岗位!
大模型入门学习
人工智能产品经理大数据机器学习程序员大模型大模型学习
大模型应该算是目前当之无愧的最有影响力的AI技术。它正在革新各个行业,包括自然语言处理、机器翻译、内容创作和客户服务等,正成为未来商业环境的重要组成部分。截至目前大模型已超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关面试也是越来越卷。我今天给大家分享一篇大模型的面试题总结,内容较长,喜欢记得收藏、关注、点赞。ii.为什么会出现LLMs复读机问题?出现LLMs复读机问题可能
SOTA是什么意思?
有奇妙能力吗
AI知识分享自然语言处理人工智能ai
最近看到一篇关于Transformer模型的论文,谷歌推出的BERT模型在11项NLP(naturallanguageprocessing)任务中夺得SOTA结果,引爆了整个NLP界。而Transformer是BERT取得成功的一个关键因素。谷歌的Transformer模型最早用于机器翻译任务,当时达到了SOTA效果。那么文中的SOTA效果,SOTA结果是什么意思呢?这里就来简单介绍一下定义:SO
【大模型面试必备】130道大模型问题深度解析,附详细答案,非常详细收藏这一篇就够了!
大模型学习
大模型架构数据库langchain人工智能面试
Attention1、讲讲对Attention的理解?Attention机制是一种在处理时序相关问题的时候常用的技术,*主要用于处理序列数据。*核心思想:在处理序列数据时,网络应该更关注输入中的重要部分,而忽略不重要的部分,它通过学习不同部分的权重,将输入的序列中的重要部分显式地加权,从而使得模型可以更好地关注与输出有关的信息。在序列建模任务中,比如机器翻译、文本摘要、语言理解等,输入序列的不同部
基于Transformer实现机器翻译
yyyyurina.
transformer机器翻译深度学习
目录一、前言1.1什么是Transformer?1.2Transfomer的基本结构1.2Transformer的重要组成部分1.2.1位置编码(PositionalEncode)1.2.2自注意力机制(Self-Attention)1.2.3多头注意力(Multi-HeadAttention)1.2.4位置感知前馈层(Position-wiseFFN)1.2.5残差连接与层归一化二、AutoDL
入选 ICML 2025!哈佛医学院等推出全球首个 HIE 领域临床思维图谱模型,神经认知结果预测任务上性能提升 15%
hyperai
在人工智能技术突飞猛进的当下,大型视觉-语言模型(LVLMs)正以惊人的速度重塑多个领域的认知边界。在自然图像与视频分析领域,这类模型依托先进的神经网络架构、海量标注数据集与强大算力支持,已能精准完成物体识别、场景解析等高阶任务。而在自然语言处理领域,LVLMs通过对TB级文本语料的学习,在机器翻译、文本摘要、情感分析等任务上达到专业级水准,其生成的学术摘要甚至能精准提炼医学文献的核心结论。然而当
NLP市场规模将破千千亿,哪些岗位会成为新风口?
duolapig
人工智能
近年来,自然语言处理(NLP)技术在全球范围内掀起了一场“语言革命”。从智能客服到机器翻译,从情感分析到内容生成,NLP正以惊人的速度重塑人类与机器的交互方式。艾媒咨询数据显示,2023年中国NLP市场规模已达660亿元,预计2027年将突破千亿大关。这一数字背后,不仅是技术迭代的加速,更是一场深刻的人才需求变革。在AI大模型浪潮的推动下,新的职业风口正在形成,而这场变革的核心逻辑,是技术与产业融
RNN、LSTM、GRU详解
昔颜1121
人工智能rnnpython
RNN、LSTM、GRU详解在深度学习领域,序列数据(如语音识别、机器翻译、文本生成等)广泛应用于自然语言处理(NLP)、时间序列预测、语音和视频处理等任务中。针对序列数据,循环神经网络(RNN,RecurrentNeuralNetwork)及其改进版本——长短时记忆网络(LSTM,LongShort-TermMemory)和门控循环单元(GRU,GatedRecurrentUnit)成为处理时序
机器翻译综述
唐风绸繆
自然语言处理机器翻译人工智能自然语言处理
机器翻译综述-CSDN博客领域词性标注-CSDN博客一、研究意义机器翻译是自然语言处理和人工智能的重要研究领域,研究如何利用计算机自动地实现不同语言之间的相互转换,也是互联网上常用的服务之一。谷歌翻译、百度翻译和微软必应翻译都提供多种语言之间的在线翻译服务。尽管机器翻译与专业翻译人员在翻译质量上仍存在较大差距,但在一些对翻译质量要求不高的场景中,或在特定的翻译任务中,机器翻译在翻译速度上具有明显优
自然语言处理之文本分类:Transformer:文本分类数据集分析
zhubeibei168
自然语言处理自然语言处理分类transformer数据挖掘人工智能支持向量机
自然语言处理之文本分类:Transformer:文本分类数据集分析自然语言处理基础NLP概述自然语言处理(NaturalLanguageProcessing,NLP)是人工智能领域的一个重要分支,专注于使计算机能够理解、解释和生成人类语言。NLP技术广泛应用于文本分类、情感分析、机器翻译、问答系统、语音识别等场景。其核心挑战在于理解语言的复杂性和多义性,以及处理大
【深度学习】循环神经网络(RNN):序列建模的奠基者
白熊188
深度学习深度学习rnn人工智能
循环神经网络(RNN):序列建模的奠基者一、算法背景:序列数据的挑战1.1传统神经网络的局限1.2序列数据特性二、算法理论:RNN的核心架构2.1基本RNN结构2.2时间展开原理2.3长短期记忆网络(LSTM)2.4门控循环单元(GRU)三、模型评估:序列建模的评判标准3.1通用评估指标3.2性能对比(PennTreebank数据集)四、应用案例:改变人机交互方式4.1机器翻译(Seq2Seq架构
自然语言处理分类
要奋斗呀
自然语言处理
NLP学习Nlp基本分类NLP领域的任务分为两个类别:第一类是人工智能NLP。包括词性标注,分词,语法解析,语言模型,信息检索,信息抽取,语义表示,文本分类。这些任务发展较为成熟,各种相关工作的主要目的是提高当前模型的性能。第二类是人工智障NLP。包括机器翻译,对话系统,问答系统。目前模型的性能尚不尽如人意,有些任务上甚至没有足够多的,真正有影响力的工作。一、文本分类--情感分类1.定义情感分类是
NLP-文本表示
Carrie_Lei
NLP自然语言处理人工智能
文本表示(TextRepresentation)是自然语言处理(NLP)中的一个关键步骤,它将文本数据转换为机器学习模型可以理解的格式。不同的文本表示方法有助于不同的任务,如文本分类、情感分析、机器翻译等。以下是常见的文本表示方法及其简介:1.词袋模型(BagofWords,BoW)定义:将文本表示为词汇表中所有词的出现频次。忽略词的顺序和语法结构。优点:简单易懂,适用于基础文本分类任务。缺点:高
BLEU及一些其它的机器翻译评估指标
道风杰韵
VLNM机器翻译人工智能自然语言处理
BLEU(BilingualEvaluationUnderstudy)即双语互译质量评估辅助工具,是一种在机器翻译任务中广泛使用的评估指标。一、原理基于n-gram的匹配BLEU主要基于n-gram(n元语法)的概念。n-gram是指文本中连续的n个单词的序列。例如,在句子“Thecatsatonthemat”中,1-gram(一元语法)有“the”“cat”“sat”“on”“the”“mat”
基于Transformer实现机器翻译(日译中)
觉今是昨非
transformer机器翻译深度学习
一、引言在自然语言处理(NLP)领域,机器翻译是一项重要且具有挑战性的任务。近年来,基于Transformer的模型在机器翻译任务中表现出色。本文将详细介绍如何使用PyTorch、Torchtext、SentencePiece以及JupyterNotebook构建一个日语到中文的机器翻译模型。二、原理解释1.Transformer模型的基础概念Transformer模型是由Vaswani等人在20
机器翻译模型及评估指标总结
J心流
机器翻译机器翻译人工智能自然语言处理
文章目录0前言1主流开源模型2.1NLLB2.2MMS2.3Seamless2.4Fairseq2.5MarianNMT2.6OpenNMT2.7mRASP2.8T5、mT5、UMT52.9Tensor2Tensor2.10NeMo2评估指标及实现代码2.1BLEU2.2ROUGE2.3METEOR3模型部署总结3.1移动端3.1.1CTranslate23.1.2TensorflowTflite
Pointer Network
D11PMINDER
deeplearning人工智能自然语言处理深度学习
通俗易懂讲解:PointerNetwork(指针网络)你提到PointerNetwork(指针网络),我们结合非自回归序列生成(NAT)的背景来讲解它的原理、操作和作用。PointerNetwork是一种特殊的神经网络,专门用来解决序列生成中“选择性输出”的问题,比如机器翻译、排序任务等。我们用简单易懂的方式一步步拆解!1.背景:什么是PointerNetwork?PointerNetwork是一
异常的核心类Throwable
无量
java源码异常处理exception
java异常的核心是Throwable,其他的如Error和Exception都是继承的这个类 里面有个核心参数是detailMessage,记录异常信息,getMessage核心方法,获取这个参数的值,我们可以自己定义自己的异常类,去继承这个Exception就可以了,方法基本上,用父类的构造方法就OK,所以这么看异常是不是很easy
package com.natsu;
mongoDB 游标(cursor) 实现分页 迭代
开窍的石头
mongodb
上篇中我们讲了mongoDB 中的查询函数,现在我们讲mongo中如何做分页查询
如何声明一个游标
var mycursor = db.user.find({_id:{$lte:5}});
迭代显示游标数
MySQL数据库INNODB 表损坏修复处理过程
0624chenhong
tomcatmysql
最近mysql数据库经常死掉,用命令net stop mysql命令也无法停掉,关闭Tomcat的时候,出现Waiting for N instance(s) to be deallocated 信息。查了下,大概就是程序没有对数据库连接释放,导致Connection泄露了。因为用的是开元集成的平台,内部程序也不可能一下子给改掉的,就验证一下咯。启动Tomcat,用户登录系统,用netstat -
剖析如何与设计人员沟通
不懂事的小屁孩
工作
最近做图烦死了,不停的改图,改图……。烦,倒不是因为改,而是反反复复的改,人都会死。很多需求人员不知该如何与设计人员沟通,不明白如何使设计人员知道他所要的效果,结果只能是沟通变成了扯淡,改图变成了应付。
那应该如何与设计人员沟通呢?
我认为设计人员与需求人员先天就存在语言障碍。对一个合格的设计人员来说,整天玩的都是点、线、面、配色,哪种构图看起来协调;哪种配色看起来合理心里跟明镜似的,
qq空间刷评论工具
换个号韩国红果果
JavaScript
var a=document.getElementsByClassName('textinput');
var b=[];
for(var m=0;m<a.length;m++){
if(a[m].getAttribute('placeholder')!=null)
b.push(a[m])
}
var l
S2SH整合之session
灵静志远
springAOPstrutssession
错误信息:
Caused by: org.springframework.beans.factory.BeanCreationException: Error creating bean with name 'cartService': Scope 'session' is not active for the current thread; consider defining a scoped
xmp标签
a-john
标签
今天在处理数据的显示上遇到一个问题:
var html = '<li><div class="pl-nr"><span class="user-name">' + user
+ '</span>' + text + '</div></li>';
ulComme
Ajax的常用技巧(2)---实现Web页面中的级联菜单
aijuans
Ajax
在网络上显示数据,往往只显示数据中的一部分信息,如文章标题,产品名称等。如果浏览器要查看所有信息,只需点击相关链接即可。在web技术中,可以采用级联菜单完成上述操作。根据用户的选择,动态展开,并显示出对应选项子菜单的内容。 在传统的web实现方式中,一般是在页面初始化时动态获取到服务端数据库中对应的所有子菜单中的信息,放置到页面中对应的位置,然后再结合CSS层叠样式表动态控制对应子菜单的显示或者隐
天-安-门,好高
atongyeye
情感
我是85后,北漂一族,之前房租1100,因为租房合同到期,再续,房租就要涨150。最近网上新闻,地铁也要涨价。算了一下,涨价之后,每次坐地铁由原来2块变成6块。仅坐地铁费用,一个月就要涨200。内心苦痛。
晚上躺在床上一个人想了很久,很久。
我生在农
android 动画
百合不是茶
android透明度平移缩放旋转
android的动画有两种 tween动画和Frame动画
tween动画;,透明度,缩放,旋转,平移效果
Animation 动画
AlphaAnimation 渐变透明度
RotateAnimation 画面旋转
ScaleAnimation 渐变尺寸缩放
TranslateAnimation 位置移动
Animation
查看本机网络信息的cmd脚本
bijian1013
cmd
@echo 您的用户名是:%USERDOMAIN%\%username%>"%userprofile%\网络参数.txt"
@echo 您的机器名是:%COMPUTERNAME%>>"%userprofile%\网络参数.txt"
@echo ___________________>>"%userprofile%\
plsql 清除登录过的用户
征客丶
plsql
tools---preferences----logon history---history 把你想要删除的删除
--------------------------------------------------------------------
若有其他凝问或文中有错误,请及时向我指出,
我好及时改正,同时也让我们一起进步。
email : binary_spac
【Pig一】Pig入门
bit1129
pig
Pig安装
1.下载pig
wget http://mirror.bit.edu.cn/apache/pig/pig-0.14.0/pig-0.14.0.tar.gz
2. 解压配置环境变量
如果Pig使用Map/Reduce模式,那么需要在环境变量中,配置HADOOP_HOME环境变量
expor
Java 线程同步几种方式
BlueSkator
volatilesynchronizedThredLocalReenTranLockConcurrent
为何要使用同步? java允许多线程并发控制,当多个线程同时操作一个可共享的资源变量时(如数据的增删改查), 将会导致数据不准确,相互之间产生冲突,因此加入同步锁以避免在该线程没有完成操作之前,被其他线程的调用, 从而保证了该变量的唯一性和准确性。 1.同步方法&
StringUtils判断字符串是否为空的方法(转帖)
BreakingBad
nullStringUtils“”
转帖地址:http://www.cnblogs.com/shangxiaofei/p/4313111.html
public static boolean isEmpty(String str)
判断某字符串是否为空,为空的标准是 str==
null
或 str.length()==
0
编程之美-分层遍历二叉树
bylijinnan
java数据结构算法编程之美
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.List;
public class LevelTraverseBinaryTree {
/**
* 编程之美 分层遍历二叉树
* 之前已经用队列实现过二叉树的层次遍历,但这次要求输出换行,因此要
jquery取值和ajax提交复习记录
chengxuyuancsdn
jquery取值ajax提交
// 取值
// alert($("input[name='username']").val());
// alert($("input[name='password']").val());
// alert($("input[name='sex']:checked").val());
// alert($("
推荐国产工作流引擎嵌入式公式语法解析器-IK Expression
comsci
java应用服务器工作Excel嵌入式
这个开源软件包是国内的一位高手自行研制开发的,正如他所说的一样,我觉得它可以使一个工作流引擎上一个台阶。。。。。。欢迎大家使用,并提出意见和建议。。。
----------转帖---------------------------------------------------
IK Expression是一个开源的(OpenSource),可扩展的(Extensible),基于java语言
关于系统中使用多个PropertyPlaceholderConfigurer的配置及PropertyOverrideConfigurer
daizj
spring
1、PropertyPlaceholderConfigurer
Spring中PropertyPlaceholderConfigurer这个类,它是用来解析Java Properties属性文件值,并提供在spring配置期间替换使用属性值。接下来让我们逐渐的深入其配置。
基本的使用方法是:(1)
<bean id="propertyConfigurerForWZ&q
二叉树:二叉搜索树
dieslrae
二叉树
所谓二叉树,就是一个节点最多只能有两个子节点,而二叉搜索树就是一个经典并简单的二叉树.规则是一个节点的左子节点一定比自己小,右子节点一定大于等于自己(当然也可以反过来).在树基本平衡的时候插入,搜索和删除速度都很快,时间复杂度为O(logN).但是,如果插入的是有序的数据,那效率就会变成O(N),在这个时候,树其实变成了一个链表.
tree代码:
C语言字符串函数大全
dcj3sjt126com
cfunction
C语言字符串函数大全
函数名: stpcpy
功 能: 拷贝一个字符串到另一个
用 法: char *stpcpy(char *destin, char *source);
程序例:
#include <stdio.h>
#include <string.h>
int main
友盟统计页面技巧
dcj3sjt126com
技巧
在基类调用就可以了, 基类ViewController示例代码
-(void)viewWillAppear:(BOOL)animated
{
[super viewWillAppear:animated];
[MobClick beginLogPageView:[NSString stringWithFormat:@"%@",self.class]];
window下在同一台机器上安装多个版本jdk,修改环境变量不生效问题处理办法
flyvszhb
javajdk
window下在同一台机器上安装多个版本jdk,修改环境变量不生效问题处理办法
本机已经安装了jdk1.7,而比较早期的项目需要依赖jdk1.6,于是同时在本机安装了jdk1.6和jdk1.7.
安装jdk1.6前,执行java -version得到
C:\Users\liuxiang2>java -version
java version "1.7.0_21&quo
Java在创建子类对象的同时会不会创建父类对象
happyqing
java创建子类对象父类对象
1.在thingking in java 的第四版第六章中明确的说了,子类对象中封装了父类对象,
2."When you create an object of the derived class, it contains within it a subobject of the base class. This subobject is the sam
跟我学spring3 目录贴及电子书下载
jinnianshilongnian
spring
一、《跟我学spring3》电子书下载地址:
《跟我学spring3》 (1-7 和 8-13) http://jinnianshilongnian.iteye.com/blog/pdf
跟我学spring3系列 word原版 下载
二、
源代码下载
最新依
第12章 Ajax(上)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
BI and EIM 4.0 at a glance
blueoxygen
BO
http://www.sap.com/corporate-en/press.epx?PressID=14787
有机会研究下EIM家族的两个新产品~~~~
New features of the 4.0 releases of BI and EIM solutions include:
Real-time in-memory computing –
Java线程中yield与join方法的区别
tomcat_oracle
java
长期以来,多线程问题颇为受到面试官的青睐。虽然我个人认为我们当中很少有人能真正获得机会开发复杂的多线程应用(在过去的七年中,我得到了一个机会),但是理解多线程对增加你的信心很有用。之前,我讨论了一个wait()和sleep()方法区别的问题,这一次,我将会讨论join()和yield()方法的区别。坦白的说,实际上我并没有用过其中任何一个方法,所以,如果你感觉有不恰当的地方,请提出讨论。
&nb
android Manifest.xml选项
阿尔萨斯
Manifest
结构
继承关系
public final class Manifest extends Objectjava.lang.Objectandroid.Manifest
内部类
class Manifest.permission权限
class Manifest.permission_group权限组
构造函数
public Manifest () 详细 androi
Oracle实现类split函数的方
zhaoshijie
oracle
关键字:Oracle实现类split函数的方
项目里需要保存结构数据,批量传到后他进行保存,为了减小数据量,子集拼装的格式,使用存储过程进行保存。保存的过程中需要对数据解析。但是oracle没有Java中split类似的函数。从网上找了一个,也补全了一下。
CREATE OR REPLACE TYPE t_split_100 IS TABLE OF VARCHAR2(100);
cr