面试题汇总——数据结构部分(持续更新)

1.完全二叉树的性质

面试题:如果一个完全二叉树的结点总数为768个,求叶子结点的个数。

由二叉树的性质知:n0=n2+1,将之带入768=n0+n1+n2中得:768=n1+2n2+1,因为完全二叉树度为1的结点个数要么为0,要么为1,那么就把n1=0或者1都代入公式中,很容易发现n1=1才符合条件。所以算出来n2=383,所以叶子结点个数n0=n2+1=384。

总结规律:如果一棵完全二叉树的结点总数为n,那么叶子结点等于n/2(当n为偶数时)或者(n+1)/2(当n为奇数时)

对任何非空二叉树T,若n0 表示叶结点的个数、n2 表示度为2 的非叶结点的个数,那么两者满足关系n0 = n2 + 1。

这个性质很有意思,下面我们来证明它。

证明:首先,假设该二叉树有N 个节点,那么它会有多少条边呢?答案是N - 1,这是因为除了根节点,其余的每个节点都有且只有一个父节点,那么这N 个节点恰好为树贡献了N - 1 条边。这是从下往上的思考,而从上往下(从树根到叶节点)的思考,容易得到每个节点的度数和 0*n0 + 1*n1 + 2*n2 即为边的个数。

因此,我们有等式 N - 1 = n1 + 2*n2,把N 用n0 + n1 + n2 替换,得到n0 + n1 + n2 - 1 = n1 + 2*n2,于是有

    n0 = n2 + 1。命题得证。

你可能感兴趣的:(面试题汇总——数据结构部分(持续更新))