- pytorch学习笔记-自定义卷积
墨染枫
深度学习pytorch学习笔记
未完结的草稿———!大概是准备整合一下常见的层,整合完感觉就可以进行搭建了(还没进行到这一步所以不太确定版)(ps我将在完结这一篇的时候删除上面的小字and二编一下整篇文章的结构,如果看到了这部分文字也是很有缘分了/doge这一部分感觉也没啥好说的==也就是reshape部分值得注意一下?剩下的感觉就是了解一下用法就可以importtorchimporttorch.nnasnnimporttorc
- 【Pytorch学习笔记(三)】张量的运算(2)
一、引言在《张量的运算(1)》中我们已经学习了几种张量中常用的非算数运算如张量的索引与切片,张量的拼接等。本节我们继续学习张量的算术运算。二、张量的算术运算(一)对应元素的加减乘除在PyTorch中,张量的对应元素的算术运算包括加法、减法、乘法、除法等常见的数学运算。这些运算可以对张量进行逐元素操作(element-wise),也可以进行张量之间的广播运算(broadcasting)。1.逐元素操
- 【Pytorch学习笔记】模型模块09——VGG详解
越轨
Pytorch学习笔记pytorch学习笔记深度学习人工智能python
一、VGG核心设计原理小卷积核堆叠用多层3×3卷积替代大卷积核(如5×5/7×7)数学原理:2层3×3卷积感受野等效于5×5:RFout=(RFin−1)×stride+KRF_{out}=(RF_{in}-1)\timesstride+KRFout=(RFin−1)×stride+K参数量对比:3层3×3卷积(3×(32C2)=27C23×(3^2C^2)=27C^23×(32C2)=27C2)
- Pytorch学习 day06(torchvision中的datasets、dataloader)
丿罗小黑
Pytorchpytorch学习人工智能
torchvision的datasets使用torchvision提供的数据集API,比较方便,如果在pycharm中下载很慢,可以URL链接到迅雷中进行下载(有些URL链接在源码里)用来告诉程序,数据集存储的位置,共有多少样本等代码如下:importtorchvision#导入torchvision库#使用torchvision的datasets模块,模块中包含CIFAR10、CIFAR100、
- Pytorch学习torch.clamp ()用法浅析
Midsummer-逐梦
#torchpytorch学习人工智能
首先给出官方对此函数的定义网页:torch.clamp—PyTorch2.1documentation一、官方定义torch.clamp(input,min=None,max=None,*,out=None)→Tensor其中:input:输入张量,即需要进行元素限制的张量。min:张量中的元素的最小值。如果元素小于这个值,将被替换为这个最小值。max:张量中的元素的最大值。如果元素大于这个值,将
- PyTorch学习笔记 - 损失函数
__星辰大海__
PyTorchpytorch
文章目录1.内置损失函数2.继承nn.Module自定义损失函数3.继承autograd.Function自定义损失函数3.三种不同方式实现MSE实验PyTorch除了内置损失函数,还可以自定义损失函数。我们以均方误差为例来讲解PyTorch中损失函数的使用方法。均方误差(MeanSquaredError,MSE)是预测值x=(x1,x2,...,xn)x=(x_1,x_2,...,x_n)x=(
- 【Pytorch学习笔记】模型模块05——Module常用函数
越轨
Pytorch学习笔记pytorch学习笔记人工智能python
Module常用函数设置训练和评估模式**作用:**在PyTorch中,模型有训练(training)和评估(evaluation)两种模式,它们会影响某些层的行为。主要影响的层:Dropout层:训练时随机丢弃神经元,评估时保持全部神经元BatchNorm层:训练时计算并更新统计量,评估时使用固定统计量LayerNorm层:行为在两种模式下基本一致2.设置方法#设置训练模式model.train
- 【Pytorch学习笔记】模型模块06——hook函数
越轨
Pytorch学习笔记深度学习pytorch人工智能学习笔记python机器学习
hook函数什么是hook函数hook函数相当于插件,可以实现一些额外的功能,而又不改变主体代码。就像是把额外的功能挂在主体代码上,所有叫hook(钩子)。下面介绍Pytorch中的几种主要hook函数。torch.Tensor.register_hooktorch.Tensor.register_hook()是一个用于注册梯度钩子函数的方法。它主要用于获取和修改张量在反向传播过程中的梯度。语法格
- PyTorch学习之:torch.gather是什么?
杰瑞学AI
AI/AGINLP/LLMsComputerknowledgepytorch学习人工智能python
torch.gather的定义:torch.gather是PyTorch中的一个张量操作函数,其作用是根据指定的维度(dim)和索引张量(index),从输入张量(input)中收集元素,生成一个与索引张量形状相同的输出张量。总体来说,就是维度dim和索引张量index决定一个收集数的规则,然后,基于这个规则从输入张量中获取需要的元素。核心部分:1.输入张量(input):任意形状的张量。2.索引
- 小土堆pytorch学习笔记 之神经网络基本骨架
李小鱼爱喝水
pytorchpytorch学习笔记
pytorch之神经网络基本骨架[!TIP]首先来补补一些图像处理的基础知识吧!(尊嘟是0基础了)关于图片格式高度(Height):图像的垂直尺寸,即图像从上到下的像素数量。宽度(Width):图像的水平尺寸,即图像从左到右的像素数量。通道(Channels):图像的颜色信息,最常见的是RGB(红、绿、蓝)三通道。每个通道代表图像在特定颜色维度上的强度。批量处理:深度学习模型通常一次处理多个图像,
- 【Pytorch学习笔记】数据模块05——编写自己的Dataset
越轨
Pytorch学习笔记pytorch学习笔记人工智能
编写自己的Dataset通过前面的知识,大家基本了解如何整个数据模块是如何构建的,下面举个完整的例子,要编写自定义的Dataset类,需要遵循以下基本步骤:1.基本结构自定义Dataset类需要继承torch.utils.data.Dataset,并实现以下三个必要方法:init:初始化函数,通常用于加载数据集和进行必要的预处理len:返回数据集的总长度getitem:根据索引返回对应的数据样本和
- 从零开始认识深度学习工具:TensorFlow vs PyTorch
赛卡
青少年AI入门深度学习tensorflowpytorchmatplotlib
从零开始认识深度学习工具:TensorFlowvsPyTorch学习前的知识准备什么是深度学习?深度学习就像教电脑从经验中学习。就像你通过反复练习学会骑自行车一样,计算机会通过大量数据自动发现规律。例如:识别照片中的动物(图像识别)把语音转成文字(语音识别)自动翻译不同语言(自然语言处理)为什么需要工具框架?想象你要搭建乐高城堡,有两种选择:自己烧制每一块积木(相当于从零开始写数学计算代码)使用现
- pytorch学习笔记(三)
shushu113
pytorch学习笔记
pytorch学习笔记(三)一、模型保存用pathlib库中的方法来保存模型参数1)保存模型参数frompathlibimportPathMODEL_PATH=Path("models")#Path更好表示路径#parents表示当前路径是否存在多级嵌套,exist_ok表示当前文件夹存在也不影响MODEL_PATH.mkdir(parents=True,exist_ok=True)MODEL_N
- 零基础学习人工智能—Python—Pytorch学习(十三)
kiba518
人工智能python学习pytorch开发语言
前言最近学习了一新概念,叫科学发现和科技发明,科学发现是高于科技发明的,而这个说法我觉得还是挺有道理的,我们总说中国的科技不如欧美,但我们实际感觉上,不论建筑,硬件还是软件,理论,我们都已经高于欧美了,那为什么还说我们不如欧美呢?科学发现是高于科技发明就很好的解释了这个问题,即,我们的在线支付,建筑行业等等,这些都是科技发明,而不是科学发现,而科学发现是引领科技发明的,而欧美在科学发现上远远领先我
- 零基础学习人工智能—Python—Pytorch学习(十一)
kiba518
人工智能python学习pytorch开发语言
前言本文主要介绍tensorboard的使用。tensorboard是一个可视化的,支持人工智能学习的一个工具。tensorboard的官方地址:https://www.tensorflow.org/tensorboard本文内容来自视频教程16课,个人感觉对于tensorboard讲的非常好。Tensorboard的使用使用代码如下:importtorchimporttorch.nnasnnim
- pytorch学习14之读写文件
wuxuand
pytorch+深度学习pytorch学习人工智能
将训练的模型保存:用在其他环境中(比如在部署中进行预测)。用于定期保存中间结果,在一个耗时较长的训练过程运行中,以确保在服务器电源被不小心断掉时,损失的计算结果不会过于严重。因此,学习如何加载和存储权重向量和整个模型。1、加载和保存张量一个张量:调用load和save函数分别读写它们。这两个函数都要求我们提供一个名称,save要求将要保存的变量作为输入。load读取已经存好的文件。importto
- 【pytorch学习笔记,利用Anaconda安装pytorch和paddle深度学习环境+pycharm安装---免额外安装CUDA和cudnn】
徳一
pytorch学习深度学习pytorch学习
学习的作者链接:link一、安装pytorch环境1.打开打开anaconda的终端后condaenvlist然后创建一个名字叫pytorch,python是3.8版本的环境condacreate-npytorchpython=3.8再次看环境condaenvlist#condaenvironments:#显示如下环境base*D:\anacondapytorchD:\anaconda\envs\
- PyTorch学习DAY2transforms各种操作
沙鳄鱼
pytorch机器学习
人民币二分类数据数据收集-->Img,Label数据划分-->trainvalidtest数据读取-->DataLoader(Sampler-->Index,Dataset-->Img,Label)数据预处理-->transformstorch.utils.data.DataLoader功能:构建可迭代的数据装载器dataset:Dataset类,决定数据从哪读取及如何读取batchsize:批大
- 零基础学习人工智能—Python—Pytorch学习(一)
kiba518
人工智能python学习pytorch开发语言
前言其实学习人工智能不难,就跟学习软件开发一样,只是会的人相对少,而一些会的人写文章,做视频又不好好讲。比如,上来就跟你说要学习张量,或者告诉你张量是向量的多维度等等模式的讲解;目的都是让别人知道他会这个技术,但又不想让你学。对于学习,多年的学习经验,和无数次的回顾学习过程,都证明了一件事,如果一篇文章,一个视频,一个课程,我没学明白,那问题一定不在我,而是上课的主动或被动的不想让我学会,所以,出
- PyTorch学习之torch.nn.functional.conv2d函数
Midsummer-逐梦
#torchpytorch学习人工智能
PyTorch学习之torch.nn.functional.conv2d函数一、简介torch.nn.functional.conv2d是PyTorch中用于进行二维卷积操作的函数。卷积操作是深度学习中卷积神经网络(CNN)的核心部分,用于提取图像特征,常见于图像分类、目标检测和语义分割等任务中。二、基本语法torch.nn.functional.conv2d(input,weight,bias=
- PyTorch学习之torch.nn.Conv2d函数
Midsummer-逐梦
#torchpytorch学习人工智能
PyTorch学习之torch.nn.Conv2d函数一、简介torch.nn.Conv2d是PyTorch中用于实现二维卷积层的类,这个类可以说是对torch.nn.functional.Conv2d的进一步封装,使其使用起来更加的傻瓜式。二、基本语法torch.nn.Conv2d(in_channels,out_channels,kernel_size,stride=1,padding=0,d
- Pytorch学习笔记(十六)Image and Video - Transfer Learning for Computer Vision Tutorial
nenchoumi3119
pytorch学习笔记pytorch学习笔记
这篇博客瞄准的是pytorch官方教程中ImageandVideo章节的TransferLearningforComputerVisionTutorial部分。官网链接:https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html完整网盘链接:https://pan.baidu.com/s/1L9PVZ-KRDGVER
- Pytorch学习笔记(十一)Learning PyTorch - What is torch.nn really
nenchoumi3119
pytorch学习笔记pytorch学习笔记
这篇博客瞄准的是pytorch官方教程中LearningPyTorch章节的Whatistorch.nnreally?部分。主要是教你如何一步一步将最原始的代码进行重构至pytorch标准的代码,如果你已经熟悉了如何使用原始代码以及pytorch标准形式构建模型,可以跳过这一篇。官网链接:https://pytorch.org/tutorials/beginner/nn_tutorial.html
- 【pytorch】图像数据预处理
子根
笔记pytorchpython深度学习
本文是记录一些在深度学习中的预处理的一些语法和函数torchvision.transforms的图像变换[PyTorch学习笔记]2.3二十二种transforms图片数据预处理方法-知乎TORCHVISION.TRANSFORMS的图像预处理_阿巫兮兮的博客-CSDN博客PyTorch09:transforms图像变换、方法操作及自定义方法-YEY的博客|YEYBlog2D、3D中心裁剪:imp
- PyTorch深度学习框架60天进阶学习计划 - 第28天:多模态模型实践(一)
凡人的AI工具箱
深度学习pytorch学习AI编程人工智能python
PyTorch深度学习框架60天进阶学习计划-第28天:多模态模型实践(一)引言:跨越感知的边界欢迎来到我们的PyTorch学习旅程第28天!今天我们将步入AI世界中最激动人心的领域之一:多模态学习。想象一下,如果你的模型既能"看"又能"读",并且能够理解图像与文字之间的联系,这将为我们打开怎样的可能性?今天我们将专注于构建图文匹配系统,学习如何使用CLIP(ContrastiveLanguage
- PyTorch 深度学习博客
Zoro|
PyTorchDeepLearning人工智能
PyTorch深度学习博客欢迎来到我的PyTorch深度学习博客!在这里,我将分享使用PyTorch学习和实践深度学习项目的点滴经验。本博客适用于初学者和有一定基础的开发者,旨在帮助大家快速搭建环境、掌握核心概念,并通过实例了解实际应用。环境配置为了确保项目的稳定性和兼容性,我选择了Python3.9环境,并在conda创建的虚拟环境中运行最新且稳定的PyTorch版本2.6.0。1.创建Pyth
- Pytorch学习之路(3)
AAAx1anyu
Pytorch学习之旅学习人工智能pytorch深度学习笔记
一.机器学习任务的整体流程1.数据预处理:数据格式统一、异常数据消除、必要数据转换,划分训练集、验证集、测试集2.选择模型3.设定损失函数、优化方法、对应的超参数4.用模型拟合训练集数据,在验证集/测试集上计算模型表现二.数据读入pytorch数据读入通过Dataset+DataLoader的方式完成,Dataset定义好数据的格式和数据变换形式,DataLoader用iterative的方式不断
- Pytorch学习之路(2)
AAAx1anyu
Pytorch学习之旅pytorch学习人工智能
(PS:请先阅读Pytorch学习之路(1)开篇注释)【因为我也是小菜鸟】Pytorch基础知识1.张量(1)简介0维张量——标量(数字)1维张量——向量2维张量——矩阵3维张量——时间序列数据股价文本数据单张彩色图片(RGB)4维张量——图像5维张量——视频张量的核心是一个数据容器(2)创建tensor1).随机初始化矩阵[torch.rand()]importtorchx=torch.rand
- Pytorch学习笔记(二)
不牌不改
【Pytorch学习】pytorch深度学习python
后续遇到一些函数等知识,还会进行及时的补充。tensor的创建使用pytorch中的列表创建tensortensor=torch.Tensor([[-1,1],[0,2<
- PyTorch学习(13):PyTorch的张量相乘(torch.matmul)
赛先生.AI
PyTorchpytorch
PyTorch学习(1):torch.meshgrid的使用-CSDN博客PyTorch学习(2):torch.device-CSDN博客PyTorch学习(9):torch.topk-CSDN博客PyTorch学习(10):torch.where-CSDN博客PyTorch学习(11):PyTorch的形状变换(view,reshape)与维度变换(transpose,permute)-CSDN
- jQuery 跨域访问的三种方式 No 'Access-Control-Allow-Origin' header is present on the reque
qiaolevip
每天进步一点点学习永无止境跨域众观千象
XMLHttpRequest cannot load http://v.xxx.com. No 'Access-Control-Allow-Origin' header is present on the requested resource. Origin 'http://localhost:63342' is therefore not allowed access. test.html:1
- mysql 分区查询优化
annan211
java分区优化mysql
分区查询优化
引入分区可以给查询带来一定的优势,但同时也会引入一些bug.
分区最大的优点就是优化器可以根据分区函数来过滤掉一些分区,通过分区过滤可以让查询扫描更少的数据。
所以,对于访问分区表来说,很重要的一点是要在where 条件中带入分区,让优化器过滤掉无需访问的分区。
可以通过查看explain执行计划,是否携带 partitions
- MYSQL存储过程中使用游标
chicony
Mysql存储过程
DELIMITER $$
DROP PROCEDURE IF EXISTS getUserInfo $$
CREATE PROCEDURE getUserInfo(in date_day datetime)-- -- 实例-- 存储过程名为:getUserInfo-- 参数为:date_day日期格式:2008-03-08-- BEGINdecla
- mysql 和 sqlite 区别
Array_06
sqlite
转载:
http://www.cnblogs.com/ygm900/p/3460663.html
mysql 和 sqlite 区别
SQLITE是单机数据库。功能简约,小型化,追求最大磁盘效率
MYSQL是完善的服务器数据库。功能全面,综合化,追求最大并发效率
MYSQL、Sybase、Oracle等这些都是试用于服务器数据量大功能多需要安装,例如网站访问量比较大的。而sq
- pinyin4j使用
oloz
pinyin4j
首先需要pinyin4j的jar包支持;jar包已上传至附件内
方法一:把汉字转换为拼音;例如:编程转换后则为biancheng
/**
* 将汉字转换为全拼
* @param src 你的需要转换的汉字
* @param isUPPERCASE 是否转换为大写的拼音; true:转换为大写;fal
- 微博发送私信
随意而生
微博
在前面文章中说了如和获取登陆时候所需要的cookie,现在只要拿到最后登陆所需要的cookie,然后抓包分析一下微博私信发送界面
http://weibo.com/message/history?uid=****&name=****
可以发现其发送提交的Post请求和其中的数据,
让后用程序模拟发送POST请求中的数据,带着cookie发送到私信的接入口,就可以实现发私信的功能了。
- jsp
香水浓
jsp
JSP初始化
容器载入JSP文件后,它会在为请求提供任何服务前调用jspInit()方法。如果您需要执行自定义的JSP初始化任务,复写jspInit()方法就行了
JSP执行
这一阶段描述了JSP生命周期中一切与请求相关的交互行为,直到被销毁。
当JSP网页完成初始化后
- 在 Windows 上安装 SVN Subversion 服务端
AdyZhang
SVN
在 Windows 上安装 SVN Subversion 服务端2009-09-16高宏伟哈尔滨市道里区通达街291号
最佳阅读效果请访问原地址:http://blog.donews.com/dukejoe/archive/2009/09/16/1560917.aspx
现在的Subversion已经足够稳定,而且已经进入了它的黄金时段。我们看到大量的项目都在使
- android开发中如何使用 alertDialog从listView中删除数据?
aijuans
android
我现在使用listView展示了很多的配置信息,我现在想在点击其中一条的时候填出 alertDialog,点击确认后就删除该条数据,( ArrayAdapter ,ArrayList,listView 全部删除),我知道在 下面的onItemLongClick 方法中 参数 arg2 是选中的序号,但是我不知道如何继续处理下去 1 2 3
- jdk-6u26-linux-x64.bin 安装
baalwolf
linux
1.上传安装文件(jdk-6u26-linux-x64.bin)
2.修改权限
[root@localhost ~]# ls -l /usr/local/jdk-6u26-linux-x64.bin
3.执行安装文件
[root@localhost ~]# cd /usr/local
[root@localhost local]# ./jdk-6u26-linux-x64.bin&nbs
- MongoDB经典面试题集锦
BigBird2012
mongodb
1.什么是NoSQL数据库?NoSQL和RDBMS有什么区别?在哪些情况下使用和不使用NoSQL数据库?
NoSQL是非关系型数据库,NoSQL = Not Only SQL。
关系型数据库采用的结构化的数据,NoSQL采用的是键值对的方式存储数据。
在处理非结构化/半结构化的大数据时;在水平方向上进行扩展时;随时应对动态增加的数据项时可以优先考虑使用NoSQL数据库。
在考虑数据库的成熟
- JavaScript异步编程Promise模式的6个特性
bijian1013
JavaScriptPromise
Promise是一个非常有价值的构造器,能够帮助你避免使用镶套匿名方法,而使用更具有可读性的方式组装异步代码。这里我们将介绍6个最简单的特性。
在我们开始正式介绍之前,我们想看看Javascript Promise的样子:
var p = new Promise(function(r
- [Zookeeper学习笔记之八]Zookeeper源代码分析之Zookeeper.ZKWatchManager
bit1129
zookeeper
ClientWatchManager接口
//接口的唯一方法materialize用于确定那些Watcher需要被通知
//确定Watcher需要三方面的因素1.事件状态 2.事件类型 3.znode的path
public interface ClientWatchManager {
/**
* Return a set of watchers that should
- 【Scala十五】Scala核心九:隐式转换之二
bit1129
scala
隐式转换存在的必要性,
在Java Swing中,按钮点击事件的处理,转换为Scala的的写法如下:
val button = new JButton
button.addActionListener(
new ActionListener {
def actionPerformed(event: ActionEvent) {
- Android JSON数据的解析与封装小Demo
ronin47
转自:http://www.open-open.com/lib/view/open1420529336406.html
package com.example.jsondemo;
import org.json.JSONArray;
import org.json.JSONException;
import org.json.JSONObject;
impor
- [设计]字体创意设计方法谈
brotherlamp
UIui自学ui视频ui教程ui资料
从古至今,文字在我们的生活中是必不可少的事物,我们不能想象没有文字的世界将会是怎样。在平面设计中,UI设计师在文字上所花的心思和功夫最多,因为文字能直观地表达UI设计师所的意念。在文字上的创造设计,直接反映出平面作品的主题。
如设计一幅戴尔笔记本电脑的广告海报,假设海报上没有出现“戴尔”两个文字,即使放上所有戴尔笔记本电脑的图片都不能让人们得知这些电脑是什么品牌。只要写上“戴尔笔
- 单调队列-用一个长度为k的窗在整数数列上移动,求窗里面所包含的数的最大值
bylijinnan
java算法面试题
import java.util.LinkedList;
/*
单调队列 滑动窗口
单调队列是这样的一个队列:队列里面的元素是有序的,是递增或者递减
题目:给定一个长度为N的整数数列a(i),i=0,1,...,N-1和窗长度k.
要求:f(i) = max{a(i-k+1),a(i-k+2),..., a(i)},i = 0,1,...,N-1
问题的另一种描述就
- struts2处理一个form多个submit
chiangfai
struts2
web应用中,为完成不同工作,一个jsp的form标签可能有多个submit。如下代码:
<s:form action="submit" method="post" namespace="/my">
<s:textfield name="msg" label="叙述:">
- shell查找上个月,陷阱及野路子
chenchao051
shell
date -d "-1 month" +%F
以上这段代码,假如在2012/10/31执行,结果并不会出现你预计的9月份,而是会出现八月份,原因是10月份有31天,9月份30天,所以-1 month在10月份看来要减去31天,所以直接到了8月31日这天,这不靠谱。
野路子解决:假设当天日期大于15号
- mysql导出数据中文乱码问题
daizj
mysql中文乱码导数据
解决mysql导入导出数据乱码问题方法:
1、进入mysql,通过如下命令查看数据库编码方式:
mysql> show variables like 'character_set_%';
+--------------------------+----------------------------------------+
| Variable_name&nbs
- SAE部署Smarty出现:Uncaught exception 'SmartyException' with message 'unable to write
dcj3sjt126com
PHPsmartysae
对于SAE出现的问题:Uncaught exception 'SmartyException' with message 'unable to write file...。
官方给出了详细的FAQ:http://sae.sina.com.cn/?m=faqs&catId=11#show_213
解决方案为:
01
$path
- 《教父》系列台词
dcj3sjt126com
Your love is also your weak point.
你的所爱同时也是你的弱点。
If anything in this life is certain, if history has taught us anything, it is
that you can kill anyone.
不顾家的人永远不可能成为一个真正的男人。 &
- mongodb安装与使用
dyy_gusi
mongo
一.MongoDB安装和启动,widndows和linux基本相同
1.下载数据库,
linux:mongodb-linux-x86_64-ubuntu1404-3.0.3.tgz
2.解压文件,并且放置到合适的位置
tar -vxf mongodb-linux-x86_64-ubun
- Git排除目录
geeksun
git
在Git的版本控制中,可能有些文件是不需要加入控制的,那我们在提交代码时就需要忽略这些文件,下面讲讲应该怎么给Git配置一些忽略规则。
有三种方法可以忽略掉这些文件,这三种方法都能达到目的,只不过适用情景不一样。
1. 针对单一工程排除文件
这种方式会让这个工程的所有修改者在克隆代码的同时,也能克隆到过滤规则,而不用自己再写一份,这就能保证所有修改者应用的都是同一
- Ubuntu 创建开机自启动脚本的方法
hongtoushizi
ubuntu
转载自: http://rongjih.blog.163.com/blog/static/33574461201111504843245/
Ubuntu 创建开机自启动脚本的步骤如下:
1) 将你的启动脚本复制到 /etc/init.d目录下 以下假设你的脚本文件名为 test。
2) 设置脚本文件的权限 $ sudo chmod 755
- 第八章 流量复制/AB测试/协程
jinnianshilongnian
nginxluacoroutine
流量复制
在实际开发中经常涉及到项目的升级,而该升级不能简单的上线就完事了,需要验证该升级是否兼容老的上线,因此可能需要并行运行两个项目一段时间进行数据比对和校验,待没问题后再进行上线。这其实就需要进行流量复制,把流量复制到其他服务器上,一种方式是使用如tcpcopy引流;另外我们还可以使用nginx的HttpLuaModule模块中的ngx.location.capture_multi进行并发
- 电商系统商品表设计
lkl
DROP TABLE IF EXISTS `category`; -- 类目表
/*!40101 SET @saved_cs_client = @@character_set_client */;
/*!40101 SET character_set_client = utf8 */;
CREATE TABLE `category` (
`id` int(11) NOT NUL
- 修改phpMyAdmin导入SQL文件的大小限制
pda158
sqlmysql
用phpMyAdmin导入mysql数据库时,我的10M的
数据库不能导入,提示mysql数据库最大只能导入2M。
phpMyAdmin数据库导入出错: You probably tried to upload too large file. Please refer to documentation for ways to workaround this limit.
- Tomcat性能调优方案
Sobfist
apachejvmtomcat应用服务器
一、操作系统调优
对于操作系统优化来说,是尽可能的增大可使用的内存容量、提高CPU的频率,保证文件系统的读写速率等。经过压力测试验证,在并发连接很多的情况下,CPU的处理能力越强,系统运行速度越快。。
【适用场景】 任何项目。
二、Java虚拟机调优
应该选择SUN的JVM,在满足项目需要的前提下,尽量选用版本较高的JVM,一般来说高版本产品在速度和效率上比低版本会有改进。
J
- SQLServer学习笔记
vipbooks
数据结构xml
1、create database school 创建数据库school
2、drop database school 删除数据库school
3、use school 连接到school数据库,使其成为当前数据库
4、create table class(classID int primary key identity not null)
创建一个名为class的表,其有一