- 算法刷题-动态规划之背包问题
1.背包问题之01(4.30)题目描述小明有一个容量为VV的背包。这天他去商场购物,商场一共有NN件物品,第ii件物品的体积为wiwi,价值为vivi。小明想知道在购买的物品总体积不超过VV的情况下所能获得的最大价值为多少,请你帮他算算。输入描述输入第11行包含两个正整数N,VN,V,表示商场物品的数量和小明的背包容量。第2∼N+12∼N+1行包含22个正整数w,vw,v,表示物品的体积和价值。1
- vivadoIP核FFT的使用
干饭不留名
fpga开发fpga
FFT配置讲解*(1)表示几个通道,这里我采用1024个点不同频率的正弦波。采用一通道(2)表示通道点的个数。(3)给FFT作用的时钟频率(4)从上到下。算法越来越简单。*(1)输入数据的格式,我选择的为定点,还有浮点数据格式。(2)选择算法类似上一张图的第四点。来考虑数据溢出。(3)类似四舍五入对数据进行截断,进行判断的。(4)输入数据的位宽。(5)低电平复位(6)有正序和倒序输出。我选择的正序
- FFT处理能力计算
FFT处理能力计算复数运算次数和实数运算次数之间的关系假设复数z1=a+bi,z2=c+di复数乘法:z1×z2=(a+bi)×(c+di)=(a×c-b×d)+(a×d+b×c)i,从上式可以看出1次复数乘法运算=4次实数乘法+2次实数加法(括号内1个减法和1个加法,共两个)。复数加法:z1+z2=(a+bi)+(c+di)=(a+c)+(b+d)i,从上式可以看出1次复数加法运算=2次实数加法
- Codeforces Round 181(Div 2)
昨天晚上又自(bei)愿(po)打了一场cf,一看是div2难度的直接炸了,听说这个难度的第三题就已经是1500分的水平了,所以我还是准备开两个题就睡觉的(太晚了),没想到我还是低估了div2难度的前两个题,还是有点意思的,特别是第一题就让我卡了好久(什么时候我才能练成看样例就能AC的佬)。A.DifficultContest题目传送门:Problem-A这道题就是让找字符串中的"FFT"和"NT
- 14.3 FFT与PEFT终极对决:1%参数实现3倍速训练,显存暴降80%!
少林码僧
掌握先机!从0起步实战AI大模型微调打造核心竞争力人工智能机器学习大数据语言模型chatgptllama
以微调权重比例分类:FFTvsPEFT深度解析在大模型微调领域,参数调整比例直接决定训练效率与模型性能的平衡。本小节将深入解析全参数微调(FullFine-Tuning,FFT)与参数高效微调(Parameter-EfficientFine-Tuning,PEFT)的核心差异,并通过具体技术方案对比和实战代码示例揭示其工程应用场景。一、FFT与PEFT技术对比矩阵
- FPGA通信设计十问
1.FFT有什么用?FFT(快速傅里叶变换)是离散傅里叶变换(DFT)的高效实现算法,它的核心作用是快速将信号从时域转换到频域,从而简化信号分析和处理的过程。自然界的信号(如声音、图像、电磁波等)通常以时域形式存在(即随时间变化的波形),但很多特性(如频率成分、谐波分布)在频域中更易分析FFT能快速计算信号中各频率分量的幅值和相位。可以进行频率拆分与实时处理。FFT是“信号的透视镜”,让我们能“看
- FPGA相关通信问题详解
霖12
fpga开发笔记信号处理信息与通信学习开发语言
首先感谢大佬@征途黯然.-CSDN博客的就我的上篇文章《FPGA通信设计十问》提出的问题,我在此做出回复一.解释FFT(快速傅里叶变换)如何在FPGA的IP核中高效实现FFT作为将时域信号转换为频域的核心算法,其在FPGA中的高效实现依赖于硬件架构与算法特性的深度适配。1.流水线架构:提升吞吐量FFT的核心是“蝶形运算”,其计算过程可分解为log2(N)级(N为FFT点数),每级包含N/2次蝶形运
- 基于FPGA的二维FFT实现
廉连曼
基于FPGA的二维FFT实现【下载地址】基于FPGA的二维FFT实现本项目提供了一种基于FPGA的高效二维FFT实现方案,专为数字信号处理和图像处理领域设计。通过并行使用两个一维FFT单元,本方案显著提升了二维FFT变换的计算效率,并基于Xilinx的FFTIP核,确保易于集成到其他FPGA设计中。该方案适用于各类频谱分析场景,尤其适合图像处理系统。经过Verilog编程和Modelsim仿真测试
- 【FFT】基于FPGA的FFT傅里叶变换和相位计算系统设计
fpga和matlab
★FPGA项目经验板块19:信号发生器fpga开发FFT相位计算
1.软件版本ISE14.7,modeslimSE,10.1c2.系统仿真与分析第1步:信号源的产生主要通过rom将产生的数据保存到rom中,然后,我们再仿真的时候调用即可。这个部分仿真效果如下所示,你给的程序中,这个部分主要有两个数据源,一个是1025,一个是N为1024,我们这里分别将这两个数据量化之后保存到rom中,仿真如下所示:
- 基于FPGA的快速傅里叶变换(FFT)设计在嵌入式系统中的应用
风吹麦很
fpga开发嵌入式
基于FPGA的快速傅里叶变换(FFT)设计在嵌入式系统中的应用快速傅里叶变换(FastFourierTransform,FFT)是一种重要的信号处理算法,在许多领域中都得到广泛的应用,例如通信系统、雷达技术、图像处理等。为了提高FFT的计算性能和实时性,将其设计为硬件加速器常常是一个明智的选择。本文将介绍基于现场可编程门阵列(Field-ProgrammableGateArray,FPGA)的FF
- 暑假算法刷题日记 Day 10
mjh_yylx
算法刷题打卡算法
目录重点整理054、拼数题目描述输入格式输出格式输入输出样例核心思路代码055、求第k小的数题目描述输入格式输出格式输入输出样例核心思路代码总结这几天我们主要刷了洛谷上排序算法对应的一些题目,相对来说比较简单一共是13道题,对应我暑假刷题的043--055。当然这些题目相对来说比较简单,我们挑着重点的说。重点整理排序这一块的题目总体来看包括,1.基本的排序算法,像快速排序、分治排序,这些知识点我写
- 基于 STM32+FPGA 的快速傅里叶频域图像在 TFT 中显示的设计与实现(项目资料)(ID:8)
嵌入式资料库
嵌入式项目合集fpga开发stm32嵌入式硬件单片机
目录摘要1绪论1.1研究背景与意义1.2国内外研究现状1.3研究内容与目标2系统方案设计2.1总体架构设计2.2硬件方案设计2.2.1主控模块选型2.2.2FPGA模块选型2.2.3TFT显示模块选型2.2.4通信方案设计2.3软件方案设计2.3.1FFT算法实现方案2.3.2频域图像渲染方案3硬件电路设计3.1STM32最小系统电路3.2FPGA模块电路3.3TFT显示模块电路3.4软件IIC通
- 【算法刷题记录(简单题)002】字符串字符匹配(java代码实现)
挺菜的
java算法开发语言
一、题目描述对于给定的字符串s和t,检查s中的所有字符是否都在t中出现。(一)输入描述第一行输入一个长度为1≤len(s)≤200、仅由小写字母组成的字符串s。第二行输入一个长度为1≤len(t)≤200、仅由小写字母组成的字符串t。(二)输出描述如果s中的所有字符都在t中出现,则输出true,否则输出false。(三)示例输入:bcabc输出:true二、题目解答(一)解题思路1.使用HashM
- LintCode算法刷题记录(入门 + 简单部分)
隔壁敲代码的小王
算法刷题笔记算法LintCode
由于是初学者,实现的方法都很简单,暂时不考虑效率,之后(可能)会更新1.A+B问题给出两个整数aa和bb,求他们的和。样例如果a=1并且b=2,返回3。挑战显然你可以直接returna+b,但是你是否可以挑战一下不这样做?(不使用++等算数运算符)说明a和b都是32位整数么?是的我可以使用位运算符么?当然可以注意事项你不需要从输入流读入数据,只需要根据aplusb的两个参数a和b,计算他们的和并返
- 【算法刷题记录001】整型数组合并(java代码实现)
一、题目描述对于给定的由n个整数组成的数组{a1,a2,…,an}和m个整数组成的数组{b1,b2,…,bm},将它们合并后从小到大排序,并输出去重后的结果。二、输入描述第一行输入一个整数n(1≤n≤150)代表数组a中元素个数。第二行输入n个整数a1,a2,…,an(-1≤ai≤105)代表数组a中的元素。第三行输入一个整数m(1≤m≤150)代表数组b中元素个数。第四行输入m个整数b1,b2,
- Python和MATLAB数字信号波形和模型模拟
要点Python和MATLAB实现以下波形和模型模拟以给定采样率模拟正弦信号,生成给定参数的方波信号,生成给定参数隔离矩形脉冲,生成并绘制线性调频信号。快速傅里叶变换结果释义:复数离散傅里叶变换、频率仓和快速傅里叶变换移位,逆快速傅里叶变换移位,数值NumPy对比观察FFT移位和逆FFT移位。离散时域表示:余弦信号生成取样,使用FFT频域信号表示,使用FFT计算离散傅里叶变换DFT,获得幅度谱并提
- Matplotlib 库来可视化频谱泄漏和加窗的效果
Mark White
matplotlib
前言很多朋友学习音频技术的时候,不理解这个频谱泄漏是什么,我们这次写个小代码直观地感受一下代码演示:频谱泄漏与加窗我们将生成一个简单的正弦波信号,然后分别用**不加窗(矩形窗)和加窗(汉明窗)**的方式对其进行傅里叶变换,并对比它们的频谱图。你会清晰地看到加窗如何减少了频谱泄漏。importnumpyasnpimportmatplotlib.pyplotaspltfromscipy.fftimpo
- iOS 13 报错:[Assert] Unsupported use of UIKit view-customization API off the main thread
干志雄
iOSios
萤石摄像头回看,在iOS11上运行好好,在iOS13上却报错了,报错如下:2021-05-1115:36:38.174462+0800App-Beta[1141:430280][Assert]UnsupporteduseofUIKitview-customizationAPIoffthemainthread.-setBackgroundColor:sentto;layer=;contentOffs
- Python实现图像处理的快速傅里叶变换(FFT)或离散余弦变换(DCT)
闲人编程
图像处理图像处理python计算机视觉FFTDCT傅里叶离散余弦变换
目录Python实现图像处理的快速傅里叶变换(FFT)或离散余弦变换(DCT)一、引言1.1图像处理简介1.2快速傅里叶变换与离散余弦变换简介1.3本文目标与结构二、理论背景与数学原理2.1快速傅里叶变换(FFT)介绍2.2离散余弦变换(DCT)介绍2.3两者的应用领域与区别三、算法实现3.1快速傅里叶变换(FFT)实现3.1.1使用Python实现FFT3.1.2图像的频域处理3.2离散余弦变换
- 信号处理算法:快速傅里叶变换(FFT)_(2).FFT算法的原理与实现
kkchenkx
信号处理技术仿真模拟信号处理算法
FFT算法的原理与实现1.引言快速傅里叶变换(FastFourierTransform,FFT)是一种高效的算法,用于计算离散傅里叶变换(DiscreteFourierTransform,DFT)及其逆变换。DFT在信号处理、图像处理、通信工程等领域中有着广泛的应用,但其计算复杂度为O(N2)O(N^2)O(
- 快速傅里叶变换(FFT)是什么?
Yashar Qian
信号处理快速傅里叶变换
快速傅里叶变换(FFT)是什么?快速傅里叶变换(FFT)本质上是一种极其高效的算法,用来计算**离散傅里叶变换(DFT)**及其逆变换。它是数字信号处理、科学计算和工程应用中最重要的算法之一。要理解FFT,先理解它要解决的问题:离散傅里叶变换(DFT)是什么?DFT全称:**DiscreteFourierTransform(离散傅里叶变换)想象你有一段数字化的信号(比如一段音频采样、图像像素数据、
- Fast Image Deconvolution using Hyper-Laplacian Priors论文阅读
青铜锁00
#退化论文阅读论文阅读图像处理
FastImageDeconvolutionusingHyper-LaplacianPriors1.论文的研究目标与实际意义2.论文的创新方法2.1核心框架:交替最小化(AlternatingMinimization)2.2x子问题:频域FFT加速2.3w子问题:高效求解的核心创新2.3.1问题形式2.3.2查找表法(LUT)2.3.3解析解法(特定α\alphaα)2.3.4通用α\alphaα
- VC++实现的快速傅里叶变换频谱分析软件
直推小新
本文还有配套的精品资源,点击获取简介:基于VC++和MFC的频谱分析程序通过快速傅里叶变换(FFT)技术,将时域信号转换至频域,实现对导入文本或Excel数据的离散谱分析。用户可通过图形界面轻松导入数据,选择分析选项并查看结果。程序利用FFT高效地计算频域数据,并通过图表展示信号频率成分。此分析工具适用于音频处理、通信、医学成像和机械故障诊断等领域。1.VC++和MFC框架介绍1.1VC++的发展
- Python实现快速傅里叶变换(FFT)
haodawei123
工作总结
importnumpyasnpimportmatplotlib.pyplotasplt#采样点选择1400个,因为设置的信号频率分量最高为600赫兹,根据采样定理知采样频率要大于信号频率2倍,所以这里设置采#样频率为1400赫兹(即一秒内有1400个采样点,一样意思的)x=np.linspace(0,1,1400)#设置需要采样的信号,频率分量有180,390和600y=7np.sin(2np.p
- 深入Python:实现FFT与DFT
weixin_42668301
本文还有配套的精品资源,点击获取简介:快速傅里叶变换(FFT)和离散傅里叶变换(DFT)是处理时域信号转换到频域的数字信号处理核心工具。本课程深入介绍FFT与DFT的原理及Python实现,涵盖从基本概念到使用numpy库进行信号处理的实战应用。学生将学习如何使用Python中的numpy库来执行DFT,掌握通过Cooley-Tukey算法实现的FFT来高效处理大型数据集。通过实际案例,理解如何分
- ArduinoFFT库版本差异导致峰值频率提取问题分析
尤颖贝Dora
ArduinoFFT库版本差异导致峰值频率提取问题分析arduinoFFTFastFourierTransformforArduino项目地址:https://gitcode.com/gh_mirrors/ar/arduinoFFT问题背景在使用ArduinoFFT库进行音频频率分析时,用户报告了不同版本间的兼容性问题。具体表现为:在使用ArduinoNano和MAX9814麦克风进行音频采样时,
- 工业物联网(IIoT)高保真架构案例
深山技术宅
物联网物联网架构数据库
以下是为您精心设计的工业物联网(IIoT)高保真架构案例,涵盖底层设备接入、边缘计算、云边协同及安全体系,全部基于真实工业场景提炼,附带技术决策要点和雷区警示:案例一:钢铁厂轧机预测性维护系统架构拓扑云端边缘层设备层ProfinetModbusTCPS7-300MQTTIIoT平台时序数据库数字孪生体维护工单系统边缘计算节点实时计算引擎FFT频谱分析温度场重建异常检测模型边缘网关轧机振动传感器红外
- 革新引擎调校:第三代高精度爆震监测系统重塑性能边界
Triv2025
爆震监测系统CAN总线记录多核DSP处理数据分析引擎调校工业级防水气缸独立增益
在竞技级引擎调校领域,毫秒级的爆震信号决定成败。新一代PLEXKNOCKMONITORV3发动机爆震分析仪,爆震监测系统以多核DSP架构、气缸级动态分析及实时FFT技术,将振动信号转化为可视化数据图谱,为工程师提供超越传统阈值的诊断维度。一、核心突破▍纳米级振动捕获44kHz高频采样率精准抓取燃烧室压力波动专用音频DSP芯片实现背景噪声动态滤波(信噪比提升300%)▍三维爆震建模独创3D动态阈值算
- MySQL 8.0的数据库root用户默认无法远程登录,需要修改root的远程授权
banzhenfei
数据库mysqladb
mysql>grantallprivilegeson.to‘root’@‘%’;ERROR1410(42000):YouarenotallowedtocreateauserwithGRANTmysql>usemysql;ReadingtableinformationforcompletionoftableandcolumnnamesYoucanturnoffthisfeaturetogetaqui
- 每日算法刷题Day32 6.15:leetcode枚举技巧7道题,用时1h10min
爱coding的橙子
算法算法leetcode数据结构
2.2441.与对应负数同时存在的最大正整数(简单)2441.与对应负数同时存在的最大正整数-力扣(LeetCode)思想1.给你一个不包含任何零的整数数组nums,找出自身与对应的负数都在数组中存在的最大正整数k。返回正整数k,如果不存在这样的整数,返回-1。2.满足条件aj=−aia_j=-a_iaj=−ai,相当于两数之和等于0代码c++:classSolution{public:intfi
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc