Over 200 of the Best Machine Learning, NLP, and Python Tutorials — 2018 Edition
本文包含了迄今为止我发现的最好的一些教程内容。它绝不是网上每个ML相关教程的简单详尽列表(这个工作量无疑是十分巨大而又枯燥重复的),而是经过详细筛选后的结果。我的目标就是将我在机器学习和自然语言处理领域各个方面找到的我认为最好的教程整理出来。
本文分四个主题进行整理: 机器学习,自然语言处理,Python和数学。在每个主题中将包含一个例子和多个资源。
为了避免资源重复罗列,每个主题下只列出了5、6个教程。下面的每个链接都应该链接了和其他链接不同的资源,也会通过不同的方式(例如幻灯片代码段)或者不同的角度呈现出这些内容。
相关资源
作者Robbie Allen是以为科技作者和创业者、并自学AI并成为博士生。曾整理许多广为流传的机器学习相关资源。
1. 2017版教程资源 Over 150 ofthe Best Machine Learning, NLP, and Python Tutorials I’ve Found(150多个最好的与机器学习,自然语言处理和Python相关的教程)
2. My Curated List of AI and Machine LearningResources from Around the Web( 终极收藏AI领域你不能不关注的大牛、机构、课程、会议、图书)
https://medium.com/machine-learning-in-practice/my-curated-list-of-ai-and-machine-learning-resources-from-around-the-web-9a97823b8524
http://www.sohu.com/a/168291972_473283
3. Cheat Sheet of Machine Learningand Python (and Math) Cheat Sheets
(值得收藏的27 个机器学习的小抄)
https://medium.com/machine-learning-in-practice/cheat-sheet-of-machine-learning-and-python-and-math-cheat-sheets-a4afe4e791b6
目录
1.机器学习
1.1 激活函数与损失函数
1.2 偏差(bias)
1.3 感知机(perceptron)
1.4 回归(Regression)
1.5 梯度下降(Gradient Descent)
1.6 生成学习(Generative Learning)
1.7 支持向量机(Support Vector Machines)
1.8 反向传播(Backpropagation)
1.9 深度学习(Deep Learning)
1.10 优化与降维(Optimization and Dimensionality Reduction)
1.11 Long Short Term Memory (LSTM)
1.12 卷积神经网络 Convolutional Neural Networks (CNNs)
1.13 循环神经网络 Recurrent Neural Nets (RNNs)
1.14 强化学习 Reinforcement Learning
1.15 生产对抗模型 Generative Adversarial Networks (GANs)
1.16 多任务学习 Multi-task Learning
2. 自然语言处理 NLP
2.1 深度学习与自然语言处理 Deep Learning and NLP
2.2 词向量 Word Vectors
2.3 编解码模型 Encoder-Decoder
3. Python
3.1 样例 Examples
3.2 Scipy and numpy教程
3.3 scikit-learn教程
3.4 Tensorflow教程
3.5 PyTorch教程
4. 数学基础教程
4.1 线性代数
4.2 概率论
4.3 微积分
1. 机器学习
https://www.kaggle.com/kanncaa1/machine-learning-tutorial-for-beginners
1.1 激活函数与损失函数
http://neuralnetworksanddeeplearning.com/chap1.html#sigmoid_neurons
https://www.quora.com/What-is-the-role-of-the-activation-function-in-a-neural-network
https://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
https://medium.com/towards-data-science/activation-functions-and-its-types-which-is-better-a9a5310cc8f
http://www.exegetic.biz/blog/2015/12/making-sense-logarithmic-loss/
http://cs231n.github.io/neural-networks-2/#losses
http://rishy.github.io/ml/2015/07/28/l1-vs-l2-loss/
http://neuralnetworksanddeeplearning.com/chap3.html#the_cross-entropy_cost_function
1.2 偏差(bias)
https://stackoverflow.com/questions/2480650/role-of-bias-in-neural-networks/2499936#2499936
http://makeyourownneuralnetwork.blogspot.com/2016/06/bias-nodes-in-neural-networks.html
https://www.quora.com/What-is-bias-in-artificial-neural-network
1.3 感知机(perceptron)
http://neuralnetworksanddeeplearning.com/chap1.html#perceptrons
http://natureofcode.com/book/chapter-10-neural-networks/#chapter10_figure3
http://computing.dcu.ie/~humphrys/Notes/Neural/single.neural.html
https://www.toptal.com/machine-learning/an-introduction-to-deep-learning-from-perceptrons-to-deep-networks
1.4 回归(Regression)
http://people.duke.edu/~rnau/regintro.htm
http://ufldl.stanford.edu/tutorial/supervised/LinearRegression/
http://ml-cheatsheet.readthedocs.io/en/latest/linear_regression.html
http://ml-cheatsheet.readthedocs.io/en/latest/logistic_regression.html
http://machinelearningmastery.com/simple-linear-regression-tutorial-for-machine-learning/
http://machinelearningmastery.com/logistic-regression-tutorial-for-machine-learning/
http://ufldl.stanford.edu/tutorial/supervised/SoftmaxRegression/
1.5 梯度下降(Gradient Descent)
http://neuralnetworksanddeeplearning.com/chap1.html#learning_with_gradient_descent
http://iamtrask.github.io/2015/07/27/python-network-part2/
http://www.kdnuggets.com/2017/04/simple-understand-gradient-descent-algorithm.html
http://sebastianruder.com/optimizing-gradient-descent/
http://cs231n.github.io/optimization-1/
1.6 生成学习(Generative Learning)
http://cs229.stanford.edu/notes/cs229-notes2.pdf
https://monkeylearn.com/blog/practical-explanation-naive-bayes-classifier/
1.7 支持向量机(Support Vector Machines)
https://monkeylearn.com/blog/introduction-to-support-vector-machines-svm/
http://cs229.stanford.edu/notes/cs229-notes3.pdf
http://cs231n.github.io/linear-classify/
1.8 反向传播(Backpropagation)
https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b
https://github.com/rasbt/python-machine-learning-book/blob/master/faq/visual-backpropagation.md
http://neuralnetworksanddeeplearning.com/chap2.html
http://www.wildml.com/2015/10/recurrent-neural-networks-tutorial-part-3-backpropagation-through-time-and-vanishing-gradients/
http://machinelearningmastery.com/gentle-introduction-backpropagation-time/
http://cs231n.github.io/optimization-2/
1.9 深度学习(Deep Learning)
http://yerevann.com/a-guide-to-deep-learning/
https://github.com/floodsung/Deep-Learning-Papers-Reading-Roadmap
http://nikhilbuduma.com/2014/12/29/deep-learning-in-a-nutshell/
http://ai.stanford.edu/~quocle/tutorial1.pdf
http://machinelearningmastery.com/what-is-deep-learning/
https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/
https://gluon.mxnet.io/
1.10 优化与降维(Optimization and Dimensionality Reduction)
https://www.knime.org/blog/seven-techniques-for-data-dimensionality-reduction
http://cs229.stanford.edu/notes/cs229-notes10.pdf
http://videolectures.net/site/normal_dl/tag=741100/nips2012_hinton_networks_01.pdf
http://rishy.github.io/ml/2017/01/05/how-to-train-your-dnn/
1.11 Long Short Term Memory (LSTM)
http://machinelearningmastery.com/gentle-introduction-long-short-term-memory-networks-experts/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://blog.echen.me/2017/05/30/exploring-lstms/
http://iamtrask.github.io/2015/11/15/anyone-can-code-lstm/
1.12 卷积神经网络 Convolutional Neural Networks (CNNs)
http://neuralnetworksanddeeplearning.com/chap6.html#introducing_convolutional_networks
https://medium.com/@ageitgey/machine-learning-is-fun-part-3-deep-learning-and-convolutional-neural-networks-f40359318721
http://colah.github.io/posts/2014-07-Conv-Nets-Modular/
http://colah.github.io/posts/2014-07-Understanding-Convolutions/
1.13 循环神经网络 Recurrent Neural Nets (RNNs)
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://distill.pub/2016/augmented-rnns/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://nikhilbuduma.com/2015/01/11/a-deep-dive-into-recurrent-neural-networks/
1.14 强化学习 Reinforcement Learning
https://www.analyticsvidhya.com/blog/2017/01/introduction-to-reinforcement-learning-implementation/
https://web.mst.edu/~gosavia/tutorial.pdf
http://www.wildml.com/2016/10/learning-reinforcement-learning/
http://karpathy.github.io/2016/05/31/rl/
1.15 生产对抗模型 Generative Adversarial Networks (GANs)
https://aaai18adversarial.github.io/slides/AML.pptx
https://blogs.nvidia.com/blog/2017/05/17/generative-adversarial-network/
https://medium.com/@ageitgey/abusing-generative-adversarial-networks-to-make-8-bit-pixel-art-e45d9b96cee7
http://blog.aylien.com/introduction-generative-adversarial-networks-code-tensorflow/
https://www.oreilly.com/learning/generative-adversarial-networks-for-beginners
1.16 多任务学习 Multi-task Learning
http://sebastianruder.com/multi-task/index.html
2. 自然语言处理 NLP
https://medium.com/@ageitgey/natural-language-processing-is-fun-9a0bff37854e
http://u.cs.biu.ac.il/~yogo/nnlp.pdf
https://monkeylearn.com/blog/the-definitive-guide-to-natural-language-processing/
https://blog.algorithmia.com/introduction-natural-language-processing-nlp/
http://www.vikparuchuri.com/blog/natural-language-processing-tutorial/
https://arxiv.org/pdf/1103.0398.pdf
2.1 深度学习与自然语言处理 Deep Learning and NLP
https://arxiv.org/pdf/1703.03091.pdf
https://nlp.stanford.edu/courses/NAACL2013/NAACL2013-Socher-Manning-DeepLearning.pdf
http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/
http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/
https://explosion.ai/blog/deep-learning-formula-nlp
https://devblogs.nvidia.com/parallelforall/understanding-natural-language-deep-neural-networks-using-torch/
http://pytorch.org/tutorials/beginner/deep_learning_nlp_tutorial.html
2.2 词向量 Word Vectors
https://www.kaggle.com/c/word2vec-nlp-tutorial
https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/
https://arxiv.org/pdf/1411.2738.pdf
http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
2.3 编解码模型 Encoder-Decoder
http://www.wildml.com/2016/01/attention-and-memory-in-deep-learning-and-nlp/
https://www.tensorflow.org/tutorials/seq2seq
https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
https://medium.com/@ageitgey/machine-learning-is-fun-part-5-language-translation-with-deep-learning-and-the-magic-of-sequences-2ace0acca0aa
How to use an Encoder-DecoderLSTM to Echo Sequences of Random Integers(machinelearningmastery.com)
http://machinelearningmastery.com/how-to-use-an-encoder-decoder-lstm-to-echo-sequences-of-random-integers/
https://google.github.io/seq2seq/
3. Python
https://developers.google.com/machine-learning/crash-course/
https://github.com/josephmisiti/awesome-machine-learning#python
http://www.kdnuggets.com/2015/11/seven-steps-machine-learning-python.html
http://nbviewer.jupyter.org/github/rhiever/Data-Analysis-and-Machine-Learning-Projects/blob/master/example-data-science-notebook/Example%20Machine%20Learning%20Notebook.ipynb
https://www.tutorialspoint.com/machine_learning_with_python/machine_learning_with_python_quick_guide.htm
3.1 样例 Examples
http://machinelearningmastery.com/implement-perceptron-algorithm-scratch-python/
http://www.wildml.com/2015/09/implementing-a-neural-network-from-scratch/
http://iamtrask.github.io/2015/07/12/basic-python-network/
http://www.kdnuggets.com/2016/01/implementing-your-own-knn-using-python.html
https://github.com/eriklindernoren/ML-From-Scratch
https://github.com/rasbt/python-machine-learning-book-2nd-edition
3.2 Scipy and numpy教程
http://www.scipy-lectures.org/
http://cs231n.github.io/python-numpy-tutorial/
https://engineering.ucsb.edu/~shell/che210d/numpy.pdf
http://nbviewer.jupyter.org/gist/rpmuller/5920182#ii.-numpy-and-scipy
3.3 scikit-learn教程
http://nbviewer.jupyter.org/github/jakevdp/sklearn_pycon2015/blob/master/notebooks/Index.ipynb
https://github.com/mmmayo13/scikit-learn-classifiers/blob/master/sklearn-classifiers-tutorial.ipynb
http://scikit-learn.org/stable/tutorial/index.html
https://github.com/mmmayo13/scikit-learn-beginners-tutorials
3.4 Tensorflow教程
https://www.tensorflow.org/tutorials/
https://medium.com/@erikhallstrm/hello-world-tensorflow-649b15aed18c
https://blog.metaflow.fr/tensorflow-a-primer-4b3fa0978be3
http://www.wildml.com/2016/08/rnns-in-tensorflow-a-practical-guide-and-undocumented-features/
http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/
http://pavel.surmenok.com/2016/10/15/how-to-run-text-summarization-with-tensorflow/
3.5 PyTorch教程
http://pytorch.org/tutorials/
http://blog.gaurav.im/2017/04/24/a-gentle-intro-to-pytorch/
https://iamtrask.github.io/2017/01/15/pytorch-tutorial/
https://github.com/jcjohnson/pytorch-examples
https://github.com/MorvanZhou/PyTorch-Tutorial
https://github.com/yunjey/pytorch-tutorial
4. 数学基础教程
https://people.ucsc.edu/~praman1/static/pub/math-for-ml.pdf
Math for MachineLearning (UMIACS CMSC422)
http://www.umiacs.umd.edu/~hal/courses/2013S_ML/math4ml.pdf
4.1 线性代数
https://betterexplained.com/articles/linear-algebra-guide/
https://betterexplained.com/articles/matrix-multiplication/
https://betterexplained.com/articles/cross-product/
https://betterexplained.com/articles/vector-calculus-understanding-the-dot-product/
http://www.cedar.buffalo.edu/~srihari/CSE574/Chap1/LinearAlgebra.pdf
https://medium.com/towards-data-science/linear-algebra-cheat-sheet-for-deep-learning-cd67aba4526c
http://cs229.stanford.edu/section/cs229-linalg.pdf
4.2 概率论
https://betterexplained.com/articles/understanding-bayes-theorem-with-ratios/
http://cs229.stanford.edu/section/cs229-prob.pdf
https://see.stanford.edu/materials/aimlcs229/cs229-prob.pdf
http://www.cedar.buffalo.edu/~srihari/CSE574/Chap1/Probability-Theory.pdf
http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/tutorial1.pdf
4.3 微积分
https://betterexplained.com/articles/how-to-understand-derivatives-the-quotient-rule-exponents-and-logarithms/
https://betterexplained.com/articles/derivatives-product-power-chain/
https://betterexplained.com/articles/vector-calculus-understanding-the-gradient/
DifferentialCalculus (Stanford CS224n)
http://web.stanford.edu/class/cs224n/lecture_notes/cs224n-2017-review-differential-calculus.pdf
CalculusOverview (readthedocs.io)
http://ml-cheatsheet.readthedocs.io/en/latest/calculus.html
原文链接:
https://medium.com/machine-learning-in-practice/over-200-of-the-best-machine-learning-nlp-and-python-tutorials-2018-edition-dd8cf53cb7dc
Scan QR Code via WeChat
to join tech group