- [21]如何提高我们的睡眠质量?
刚毅的saolie
原创2016-05-29叶武滨易效能时间管理大家好我是时间管理学习并践行者努尔。在上一讲中我们谈到了高效能人士的睡眠时间。易效能提倡早睡早起,因为只有早起我们才能获得安静的时间,以便我们对自己的未来和当下做出检视与安排,让自己活在“要事第一”当中,以及对每一天的生活做到掌控。因为早起,所以我们必然要求大家要早睡,因为睡眠的时间必须有保障。据说,我们的睡眠不能超过8个小时,也尽量不要低于7个半小时,
- 数据分析领域中AI人工智能的发展前景展望
AI大模型应用工坊
AI大模型开发实战数据分析人工智能数据挖掘ai
数据分析领域中AI人工智能的发展前景展望关键词:数据分析、人工智能、机器学习、深度学习、数据挖掘、预测分析、自动化摘要:本文深入探讨了人工智能在数据分析领域的发展现状和未来趋势。我们将从核心技术原理出发,分析AI如何改变传统数据分析范式,详细讲解机器学习算法在数据分析中的应用,并通过实际案例展示AI驱动的数据分析解决方案。文章还将探讨行业应用场景、工具生态以及未来发展面临的挑战和机遇,为数据分析师
- 深入理解卷积神经网络(CNN)与循环神经网络(RNN)
CodeJourney.
cnnrnn人工智能
在当今的人工智能领域,神经网络无疑是最为璀璨的明珠之一。而卷积神经网络(ConvolutionalNeuralNetworks,CNN)和循环神经网络(RecurrentNeuralNetworks,RNN)作为神经网络家族中的重要成员,各自有着独特的架构和强大的功能,广泛应用于众多领域。本文将深入探讨这两种神经网络的原理、特点以及应用场景,为对深度学习感兴趣的读者提供全面的知识讲解。一、卷积神经
- 时序预测 | MATLAB实现贝叶斯优化CNN-GRU时间序列预测(股票价格预测)
Matlab机器学习之心
matlabcnngru
✅作者简介:热爱数据处理、数学建模、仿真设计、论文复现、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击主页:Matlab科研工作室个人信条:格物致知,期刊达人。内容介绍股票价格预测一直是金融领域一个极具挑战性的课题。其内在的非线性、随机性和复杂性使得传统的预测方法难以取得令人满意的效果。近年来,深度学习技术,特别是卷积神经网络(CNN)和门控循环单元(GRU)的结合,为时
- 时序预测 | MATLAB实现BO-CNN-GRU贝叶斯优化卷积门控循环单元时间序列预测
Matlab算法改进和仿真定制工程师
matlabcnngru
✅作者简介:热爱数据处理、数学建模、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击:Matlab科研工作室个人信条:格物致知。内容介绍时间序列预测在各个领域都具有重要的应用价值,例如金融市场预测、气象预报、交通流量预测等。准确地预测未来趋势对于决策制定至关重要。近年来,深度学习技术在时间序列预测领域取得了显著进展,其中卷积神经网络(CNN)和门控循环单元(GRU)由于其强
- Python Gradio:实现交互式图像编辑
PythonAI编程架构实战家
Python编程之道python开发语言ai
PythonGradio:实现交互式图像编辑关键词:Python,Gradio,交互式图像编辑,计算机视觉,深度学习,图像处理,Web应用摘要:本文将深入探讨如何使用Python的Gradio库构建交互式图像编辑应用。我们将从基础概念开始,逐步介绍Gradio的核心功能,并通过实际代码示例展示如何实现各种图像处理功能。文章将涵盖图像滤镜应用、对象检测、风格迁移等高级功能,同时提供完整的项目实战案例
- 如何运用深度学习打造高效AI人工智能系统
AI智能探索者
AIAgent智能体开发实战人工智能深度学习ai
如何运用深度学习打造高效AI人工智能系统关键词:深度学习、AI系统、神经网络、模型优化、实战开发摘要:本文将从深度学习的核心概念出发,结合生活实例和代码实战,系统讲解如何构建高效AI系统。我们会拆解数据准备、模型设计、训练优化、部署落地的全流程,揭秘“数据-模型-训练-推理”的协同机制,并通过具体案例演示从0到1开发AI系统的关键技巧,帮助开发者掌握打造高效AI系统的底层逻辑。背景介绍目的和范围在
- 小米mix3今天在故宫发布
笛白
2016年10月25日,也就是2年前的今天,小米开创性的发布mix系列的第一款手机,率先提出全面屏的概念,随着这一市场需求的崛起,无数手机厂家为解决全面屏的问题创新性的进行专研,从最开始的尽量扩大屏占比,到vivo最新款NEX惊艳式的升降式摄像头方案,到今天mix3采用磁铁滑盖式的创新设计,人类在科技的创新道路上永不止步,想尽千方百计获得手机的最佳体验感。我对小米的好感源于对雷军的逐步认识。从武汉
- 如何学好图像处理——从小白到大神?
chentengkui
图像处理
如何学好图像处理——从小白到大神?标签:图像处理学习方法2016-02-2617:4818439人阅读评论(25)收藏举报分类:学习方法与方法论(13)版权声明:本文为博主原创文章,未经博主允许不得转载。什么是数字图像处理?历史、以及它所研究的内容。说起图像处理,你会想到什么?你是否真的了解这个领域所研究的内容。纵向来说,数字图像处理研究的历史相当悠久;横向来说,数字图像处理研究的话题相当广泛。数
- 那些你不知道的医疗保障缺口
罗茜月
长期以来,市场对中国医保体系的概括一直是六个字:广覆盖、低水平。这六个字背后意味着现在的医保有哪些特点?个人医疗保障在一个什么样的水平?医疗保障缺口有哪些?第一,医保设计的核心目标是覆盖大部分人,也就是广度,而不是深度,或者说是保障的程度。因此,医保发展的首要目的是先将大部分人纳入保障范围,尤其是新农合,从2005年的参保率仅为75.66%上升到2016年的98.8%,人群覆盖率是发展的核心。在这
- 基于深度学习的目标检测算法综述:从RCNN到YOLOv13,一文看懂十年演进!
人工智能教程
深度学习目标检测算法人工智能自动驾驶YOLO机器学习
一、引言:目标检测的十年巨变2012年AlexNet拉开深度学习序幕,2014年RCNN横空出世,目标检测从此进入“深度时代”。十年间,算法从两阶段到单阶段,从Anchor-base到Anchor-free,从CNN到Transformer,从2D到3D,从监督学习到自监督学习,迭代速度之快令人目不暇接。本文将系统梳理基于深度学习的目标检测算法,带你全面了解技术演进、核心思想、代表算法、工业落地与
- Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现不同水果的检测识别(C#代码,UI界面版)
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现不同水果的检测识别(C#代码,UI界面版))工业相机使用YoloV8模型实现不同水果的检测识别工业相机通过YoloV8模型实现不同水果的检测识别的技术背景在相机SDK中获取图像转换图像的代码分析工业相机图像转换Bitmap图像格式和Mat图像重要核心代码本地文件图像转换Bitmap图像格式和Mat图像重要核心代码Mat图像导入Yo
- 从零开始构建深度学习环境:基于Pytorch、CUDA与cuDNN的虚拟环境搭建与实践(适合初学者)
荣华富贵8
程序员的知识储备2程序员的知识储备3深度学习pytorch人工智能
摘要:深度学习正在引领人工智能技术的革新,而对于初学者来说,正确搭建深度学习环境是迈向AI研究与应用的第一步。本文将为读者提供一套详尽的教程,指导如何在本地环境中搭建Pytorch、CUDA与cuDNN,以及如何利用Anaconda和PyCharm进行高效开发。内容涵盖从环境配置、常见错误修正,到基础的深度学习模型构建及训练。我们旨在为深度学习零基础的入门者提供一个全面且易于理解的“保姆级”教程,
- 人工智能概念之九:深度学习概述
文章目录相关文章一、深度学习的定位:AI时代的基石技术1.1技术生态全景图1.2技术革命的催化剂二、深度学习的双面性:性能优势与技术挑战2.1技术优势全景扫描2.2技术挑战深度剖析三、技术演进时间轴:70年的厚积薄发四、主流框架生态对比五、未来演进方向相关文章人工智能概念之二:人工智能核心概念:网页链接一、深度学习的定位:AI时代的基石技术1.1技术生态全景图深度学习处于人工智能(AI)技术金字塔
- 学苑教育杂志《学苑教育》杂志社学苑教育编辑部2025年第21期目录
QQ296078736
人工智能
专题研究推进“教-学-评”一体化,打造小学语文高效课堂刘月兰;4-6教育管理新高考制度下普通高中生涯教育课程设计的研究霍亚贞;马玲;7-9课堂教学核心素养下小学数学深度学习课堂的构建策略康贵景;10-12“双减”背景下初中英语教学的课堂模式高燕;13-15小学低年级数学说理课堂构建策略玉洁;16-18基于法治观念培育的道法课项目式教学策略许静;19-21“双师课堂”在初中语文写作教学中的实践孙巧玲
- 给你的第一封情书
文樱
图片发自App我是2016年的12月14日认识你的。我第一次见你就觉得你特别可爱,所以这大概是一见钟情吧。后来另一个女孩出现了,所有人都开始捧着她,贬低你。但我依旧喜欢你,维护你。我和水晶都很心疼你,因为你的善良和温柔都没有错。那个女孩其实也没有错,只是因为她的追随者,我对她实在生不起好感。愿你幸福。遇见你的我很快乐。
- 骗术
萧小放
为什么突然换了笔风,想写这样一篇文章,主要目的是为了给正整游走于股市边缘家人们提个醒,一定要记得天上不会掉馅饼这句箴言,赚钱不易,且用且谨慎!废话话不多说,直接进入正题。2016年的时候我在办理银行业务的时候顺带开了一个股票却一直未启用,菜鸟级别,说出来不怕你笑话,同事们都说不玩股票可以申购转债,中签即白捡,基本无风险,一千块钱搞定。即便是这样我也没有激活账户。2020年的疫情来领,行业不景气,坐
- 使用 PyTorch 和 Pandas 进行 Kaggle 房价预测
Clang's Blog
AIpytorchpandas人工智能
文章目录1、环境设置2、数据下载3、数据预处理4、模型构建5、训练和验证6、训练模型并生成预测结果7、完整代码在本篇博文中,我们将探索如何使用PyTorch和Pandas库,构建一个用于Kaggle房价预测的模型。我们将详细讨论数据加载、预处理、模型构建、训练、验证及最终预测的全过程。1、环境设置我们首先需要导入所需的库,包括用于数据处理的pandas和numpy,以及用于深度学习的torch。i
- 《目标法则》:如何找到你的明确首要目标?
女朱姝涵
我们每个人都想找到自己最终要确定的目标,但是很多人终其一生都在寻找中,都没有找到自己最需要的目标。在一本书中,结合成功学之父拿破仑•希尔里面的理念,可以助力你找到自己最终的目标。该书就是《目标法则—大师的积极思维课》。作者是米奇•霍洛维茨,作家,企鹅出版社编辑,著有《隐秘美国》《神奇俱乐部》等获奖图书。是很多时报的专栏作家,更是CNN,哥伦比亚广播等有声书讲师,一生在研究拿破仑•希尔的思想。什么是
- ORA-12547: TNS:lost contact+oracle 开启监听失败
勤径苦舟
oracle
1、ORA-12547:TNS:lostcontact[root@dbserver/]#sqlplussys/xiniu123assysdbaSQL*Plus:Release12.2.0.1.0ProductiononSatAug2612:55:342017Copyright(c)1982,2016,Oracle.Allrightsreserved.ERROR:ORA-12547:TNS:lost
- 使用中转API在Python中调用大型语言模型 (LLM) 的实践**
qq_37836323
python语言模型开发语言
**在人工智能技术中,大型语言模型(LLM)已成为自然语言处理(NLP)和生成任务的重要工具。然而,由于网络限制,直接访问OpenAI的API在中国可能面临挑战。因此,本文将介绍如何使用中转API地址http://api.wlai.vip来调用LLM,并提供相关的demo代码。什么是大型语言模型(LLM)?大型语言模型是一种深度学习模型,训练于大量文本数据上,能够生成、总结、翻译和回答问题等。Op
- 【免费下载】 探索PlantVillage-Dataset:深度学习在植物病害检测中的革命性突破
探索PlantVillage-Dataset:深度学习在植物病害检测中的革命性突破在这个数字化时代,人工智能正逐步改变我们的生活,其中深度学习在农业领域的应用尤其引人注目。PlantVillage-Dataset是一个开放源代码的项目,它提供了一个庞大的植物病害识别数据集,旨在帮助开发人员和研究者利用机器学习技术改善农作物健康状况的监测。本文将深入探讨该项目的技术细节、应用价值及其独特之处。项目简
- Python爬虫【五十八章】Python数据清洗与分析全攻略:从Pandas到深度学习的异常检测进阶
程序员_CLUB
Python入门到进阶python爬虫pandas
目录背景与需求分析第一章:结构化数据清洗实战(Pandas核心技法)1.1数据去重策略矩阵1.2智能缺失值处理体系第二章:深度学习异常检测进阶2.1自动编码器异常检测(时序数据)2.2图神经网络异常检测(关系型数据)第三章:综合案例实战案例1:金融交易反欺诈系统案例2:工业传感器异常检测第四章:性能优化与工程实践4.1大数据处理加速技巧4.2模型部署方案第五章:方法论总结与展望5.1方法论框架5.
- 大模型【进阶】(一)MoE(mixture of experts)混合专家结构
ReinaXue
人工智能笔记语言模型神经网络
什么是MoE结构?MoE(MixtureofExperts,专家混合模型)是一种深度学习模型架构,通常用于处理大规模模型和计算资源效率的挑战。在MoE结构中,模型由多个“专家”组成,每个专家处理不同的任务或输入数据的不同部分,而不是让所有专家都参与每次计算。这种方式提高了计算效率,并在某些情况下有助于增强模型的表现。MoE结构的核心思想专家:在MoE模型中,专家通常指的是网络中的子模型,每个专家具
- 【YOLO系列】YOLOv1详解:模型结构、损失函数、训练方法及代码实现
一碗白开水一
yolo系列助你拿捏AI算法YOLO人工智能目标检测计算机视觉
YOLOv1(YouOnlyLookOnce):实时目标检测的革命性突破✨motivation在目标检测领域,传统方法如R-CNN系列存在计算冗余、推理速度慢的问题。2016年提出的YOLO(YouOnlyLookOnce)首次实现端到端单阶段检测,将检测速度提升至45FPS(FasterR-CNN仅7FPS),彻底改变了实时目标检测的格局。其核心思想是将检测视为回归问题,实现"看一眼即知全貌"的
- 【三维目标检测】Complex-Yolov4详解(二):模型结构
Coding的叶子
Python三维点云实战宝典Complex-YoloComplex-Yolov4三维目标检测目标检测python
本文为博主原创文章,未经博主允许不得转载。本文为专栏《python三维点云从基础到深度学习》系列文章,地址为“https://blog.csdn.net/suiyingy/article/details/124017716”。Complex-Yolo网络模型的核心思想是用鸟瞰图BEV替换Yolo网络输入的RGB图像。因此,在完成BEV处理之后,模型的训练和推理过程基本和Yolo完全一致。Yolov
- 汽车电子架构 | 必备技能一文读懂 AUTOSAR
致守
APIagv汽车架构
引言AUTOSAR标准(AUTOmotiveOpenSystemArchitecture,汽车开放系统架构)是全球最大汽车公司合作的产物。它是汽车行业电气/电子架构的开放式标准,于2003年在由汽车原始设备制造商、供应商以及软件、半导体和电子行业其他公司组成的AUTOSAR开发合作组织制定。VectorInformatikGmbH(2016):Autosar-基础知识,AUTOSAR课程手册第3页
- 图像质量评价2
JXH_SHU
本次介绍的是2018CVPR另一篇图像质量评价的论文——BlindPredictingSimilarQualityMapforImageQualityAssessment。这篇采用的思路与之前那篇2018CVPR相近,同样是采用了质量图像生成的方法。这篇论文主要的特点是以全参考的相似图来作为生成网络的label,生成网络的结构采用了之前U-net架构,同时这篇论文还采用了一种集成的思想,即用多种的
- CIRL:因果启发的表征学习框架——从域泛化到奖励分解的因果革命
大千AI助手
人工智能Python#OTHER学习深度学习人工智能机器学习表征学习因果推断域泛化
CIRL(因果启发的表征学习)是由国内顶尖AI研究团队于CVPR2022提出的创新框架,最初用于解决域泛化(DomainGeneralization,DG)问题,其核心思想是通过结构因果模型(SCM)分离数据中的因果与非因果因素,构建鲁棒表征。后续研究(如GRD、Diaster算法)将其扩展至强化学习的奖励分解领域,通过因果充分性、稀疏性与正交性约束,解决延迟奖励与奖励黑客问题。原始论文发表于CV
- 教师的故事五篇
兰心素语
引导语:老师,是太阳底下最神圣的职业,老师哺育着太阳底下最美丽的花朵,为我们遮风挡雨,给了我们一片洋溢着爱的海洋,给了我们荡漾着芬芳的幸福生活。是的,我们应该感激他们。在2016年即将到来的教师节,你有哪种方式来感谢你的恩师呢?下面是小编收集的几篇关于教师节的故事,大家一起来看看吧。教师节故事五篇教师节故事--老师的智慧毕业那年,老师站在讲台上给我们上了最后一堂课,整堂课上的气氛活跃,大家问了很多
- html
周华华
html
js
1,数组的排列
var arr=[1,4,234,43,52,];
for(var x=0;x<arr.length;x++){
for(var y=x-1;y<arr.length;y++){
if(arr[x]<arr[y]){
&
- 【Struts2 四】Struts2拦截器
bit1129
struts2拦截器
Struts2框架是基于拦截器实现的,可以对某个Action进行拦截,然后某些逻辑处理,拦截器相当于AOP里面的环绕通知,即在Action方法的执行之前和之后根据需要添加相应的逻辑。事实上,即使struts.xml没有任何关于拦截器的配置,Struts2也会为我们添加一组默认的拦截器,最常见的是,请求参数自动绑定到Action对应的字段上。
Struts2中自定义拦截器的步骤是:
- make:cc 命令未找到解决方法
daizj
linux命令未知make cc
安装rz sz程序时,报下面错误:
[root@slave2 src]# make posix
cc -O -DPOSIX -DMD=2 rz.c -o rz
make: cc:命令未找到
make: *** [posix] 错误 127
系统:centos 6.6
环境:虚拟机
错误原因:系统未安装gcc,这个是由于在安
- Oracle之Job应用
周凡杨
oracle job
最近写服务,服务上线后,需要写一个定时执行的SQL脚本,清理并更新数据库表里的数据,应用到了Oracle 的 Job的相关知识。在此总结一下。
一:查看相关job信息
1、相关视图
dba_jobs
all_jobs
user_jobs
dba_jobs_running 包含正在运行
- 多线程机制
朱辉辉33
多线程
转至http://blog.csdn.net/lj70024/archive/2010/04/06/5455790.aspx
程序、进程和线程:
程序是一段静态的代码,它是应用程序执行的蓝本。进程是程序的一次动态执行过程,它对应了从代码加载、执行至执行完毕的一个完整过程,这个过程也是进程本身从产生、发展至消亡的过程。线程是比进程更小的单位,一个进程执行过程中可以产生多个线程,每个线程有自身的
- web报表工具FineReport使用中遇到的常见报错及解决办法(一)
老A不折腾
web报表finereportjava报表报表工具
FineReport使用中遇到的常见报错及解决办法(一)
这里写点抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、address pool is full:
含义:地址池满,连接数超过并发数上
- mysql rpm安装后没有my.cnf
林鹤霄
没有my.cnf
Linux下用rpm包安装的MySQL是不会安装/etc/my.cnf文件的,
至于为什么没有这个文件而MySQL却也能正常启动和作用,在这儿有两个说法,
第一种说法,my.cnf只是MySQL启动时的一个参数文件,可以没有它,这时MySQL会用内置的默认参数启动,
第二种说法,MySQL在启动时自动使用/usr/share/mysql目录下的my-medium.cnf文件,这种说法仅限于r
- Kindle Fire HDX root并安装谷歌服务框架之后仍无法登陆谷歌账号的问题
aigo
root
原文:http://kindlefireforkid.com/how-to-setup-a-google-account-on-amazon-fire-tablet/
Step 4: Run ADB command from your PC
On the PC, you need install Amazon Fire ADB driver and instal
- javascript 中var提升的典型实例
alxw4616
JavaScript
// 刚刚在书上看到的一个小问题,很有意思.大家一起思考下吧
myname = 'global';
var fn = function () {
console.log(myname); // undefined
var myname = 'local';
console.log(myname); // local
};
fn()
// 上述代码实际上等同于以下代码
m
- 定时器和获取时间的使用
百合不是茶
时间的转换定时器
定时器:定时创建任务在游戏设计的时候用的比较多
Timer();定时器
TImerTask();Timer的子类 由 Timer 安排为一次执行或重复执行的任务。
定时器类Timer在java.util包中。使用时,先实例化,然后使用实例的schedule(TimerTask task, long delay)方法,设定
- JDK1.5 Queue
bijian1013
javathreadjava多线程Queue
JDK1.5 Queue
LinkedList:
LinkedList不是同步的。如果多个线程同时访问列表,而其中至少一个线程从结构上修改了该列表,则它必须 保持外部同步。(结构修改指添加或删除一个或多个元素的任何操作;仅设置元素的值不是结构修改。)这一般通过对自然封装该列表的对象进行同步操作来完成。如果不存在这样的对象,则应该使用 Collections.synchronizedList 方
- http认证原理和https
bijian1013
httphttps
一.基础介绍
在URL前加https://前缀表明是用SSL加密的。 你的电脑与服务器之间收发的信息传输将更加安全。
Web服务器启用SSL需要获得一个服务器证书并将该证书与要使用SSL的服务器绑定。
http和https使用的是完全不同的连接方式,用的端口也不一样,前者是80,后
- 【Java范型五】范型继承
bit1129
java
定义如下一个抽象的范型类,其中定义了两个范型参数,T1,T2
package com.tom.lang.generics;
public abstract class SuperGenerics<T1, T2> {
private T1 t1;
private T2 t2;
public abstract void doIt(T
- 【Nginx六】nginx.conf常用指令(Directive)
bit1129
Directive
1. worker_processes 8;
表示Nginx将启动8个工作者进程,通过ps -ef|grep nginx,会发现有8个Nginx Worker Process在运行
nobody 53879 118449 0 Apr22 ? 00:26:15 nginx: worker process
- lua 遍历Header头部
ronin47
lua header 遍历
local headers = ngx.req.get_headers()
ngx.say("headers begin", "<br/>")
ngx.say("Host : ", he
- java-32.通过交换a,b中的元素,使[序列a元素的和]与[序列b元素的和]之间的差最小(两数组的差最小)。
bylijinnan
java
import java.util.Arrays;
public class MinSumASumB {
/**
* Q32.有两个序列a,b,大小都为n,序列元素的值任意整数,无序.
*
* 要求:通过交换a,b中的元素,使[序列a元素的和]与[序列b元素的和]之间的差最小。
* 例如:
* int[] a = {100,99,98,1,2,3
- redis
开窍的石头
redis
在redis的redis.conf配置文件中找到# requirepass foobared
把它替换成requirepass 12356789 后边的12356789就是你的密码
打开redis客户端输入config get requirepass
返回
redis 127.0.0.1:6379> config get requirepass
1) "require
- [JAVA图像与图形]现有的GPU架构支持JAVA语言吗?
comsci
java语言
无论是opengl还是cuda,都是建立在C语言体系架构基础上的,在未来,图像图形处理业务快速发展,相关领域市场不断扩大的情况下,我们JAVA语言系统怎么从这么庞大,且还在不断扩大的市场上分到一块蛋糕,是值得每个JAVAER认真思考和行动的事情
- 安装ubuntu14.04登录后花屏了怎么办
cuiyadll
ubuntu
这个情况,一般属于显卡驱动问题。
可以先尝试安装显卡的官方闭源驱动。
按键盘三个键:CTRL + ALT + F1
进入终端,输入用户名和密码登录终端:
安装amd的显卡驱动
sudo
apt-get
install
fglrx
安装nvidia显卡驱动
sudo
ap
- SSL 与 数字证书 的基本概念和工作原理
darrenzhu
加密ssl证书密钥签名
SSL 与 数字证书 的基本概念和工作原理
http://www.linuxde.net/2012/03/8301.html
SSL握手协议的目的是或最终结果是让客户端和服务器拥有一个共同的密钥,握手协议本身是基于非对称加密机制的,之后就使用共同的密钥基于对称加密机制进行信息交换。
http://www.ibm.com/developerworks/cn/webspher
- Ubuntu设置ip的步骤
dcj3sjt126com
ubuntu
在单位的一台机器完全装了Ubuntu Server,但回家只能在XP上VM一个,装的时候网卡是DHCP的,用ifconfig查了一下ip是192.168.92.128,可以ping通。
转载不是错:
Ubuntu命令行修改网络配置方法
/etc/network/interfaces打开后里面可设置DHCP或手动设置静态ip。前面auto eth0,让网卡开机自动挂载.
1. 以D
- php包管理工具推荐
dcj3sjt126com
PHPComposer
http://www.phpcomposer.com/
Composer是 PHP 用来管理依赖(dependency)关系的工具。你可以在自己的项目中声明所依赖的外部工具库(libraries),Composer 会帮你安装这些依赖的库文件。
中文文档
入门指南
下载
安装包列表
Composer 中国镜像
- Gson使用四(TypeAdapter)
eksliang
jsongsonGson自定义转换器gsonTypeAdapter
转载请出自出处:http://eksliang.iteye.com/blog/2175595 一.概述
Gson的TypeAapter可以理解成自定义序列化和返序列化 二、应用场景举例
例如我们通常去注册时(那些外国网站),会让我们输入firstName,lastName,但是转到我们都
- JQM控件之Navbar和Tabs
gundumw100
htmlxmlcss
在JQM中使用导航栏Navbar是简单的。
只需要将data-role="navbar"赋给div即可:
<div data-role="navbar">
<ul>
<li><a href="#" class="ui-btn-active&qu
- 利用归并排序算法对大文件进行排序
iwindyforest
java归并排序大文件分治法Merge sort
归并排序算法介绍,请参照Wikipeida
zh.wikipedia.org/wiki/%E5%BD%92%E5%B9%B6%E6%8E%92%E5%BA%8F
基本思想:
大文件分割成行数相等的两个子文件,递归(归并排序)两个子文件,直到递归到分割成的子文件低于限制行数
低于限制行数的子文件直接排序
两个排序好的子文件归并到父文件
直到最后所有排序好的父文件归并到输入
- iOS UIWebView URL拦截
啸笑天
UIWebView
本文译者:candeladiao,原文:URL filtering for UIWebView on the iPhone说明:译者在做app开发时,因为页面的javascript文件比较大导致加载速度很慢,所以想把javascript文件打包在app里,当UIWebView需要加载该脚本时就从app本地读取,但UIWebView并不支持加载本地资源。最后从下文中找到了解决方法,第一次翻译,难免有
- 索引的碎片整理SQL语句
macroli
sql
SET NOCOUNT ON
DECLARE @tablename VARCHAR (128)
DECLARE @execstr VARCHAR (255)
DECLARE @objectid INT
DECLARE @indexid INT
DECLARE @frag DECIMAL
DECLARE @maxfrag DECIMAL
--设置最大允许的碎片数量,超过则对索引进行碎片
- Angularjs同步操作http请求with $promise
qiaolevip
每天进步一点点学习永无止境AngularJS纵观千象
// Define a factory
app.factory('profilePromise', ['$q', 'AccountService', function($q, AccountService) {
var deferred = $q.defer();
AccountService.getProfile().then(function(res) {
- hibernate联合查询问题
sxj19881213
sqlHibernateHQL联合查询
最近在用hibernate做项目,遇到了联合查询的问题,以及联合查询中的N+1问题。
针对无外键关联的联合查询,我做了HQL和SQL的实验,希望能帮助到大家。(我使用的版本是hibernate3.3.2)
1 几个常识:
(1)hql中的几种join查询,只有在外键关联、并且作了相应配置时才能使用。
(2)hql的默认查询策略,在进行联合查询时,会产
- struts2.xml
wuai
struts
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache