- 声纹识别系统(MFCC特征+DTW/SVM分类)
佩爷0107
支持向量机分类算法梅尔频率倒谱系数动态时间规整
摘要本毕业设计实现了一个完整的声纹识别系统,采用梅尔频率倒谱系数(MFCC)作为声学特征提取方法,结合动态时间规整(DTW)和支持向量机(SVM)两种分类算法进行说话人识别。系统包含语音预处理、特征提取、模型训练和识别测试等完整流程,并通过实验对比两种分类算法的性能。第一章绪论1.1研究背景与意义声纹识别(SpeakerRecognition)是生物特征识别技术的一种,通过分析语音信号中包含的说话
- 使用 C++/Faiss 加速海量 MFCC 特征的相似性搜索
whoarethenext
c++faiss开发语言
使用C++/Faiss加速海量MFCC特征的相似性搜索引言在现代音频处理应用中,例如大规模声纹识别(SpeakerRecognition)、音乐信息检索(MusicInformationRetrieval)或音频事件检测(AudioEventDetection),我们通常需要从海量的音频库中快速找到与给定查询音频最相似的样本。这个过程的核心技术是对音频内容进行特征提取和高效的相似性搜索。MFCC(
- 使用 C++ 实现 MFCC 特征提取与说话人识别系统
whoarethenext
c++开发语言mfcc语音识别
使用C++实现MFCC特征提取与说话人识别系统在音频处理和人工智能领域,C++凭借其卓越的性能和对硬件的底层控制能力,在实时音频分析、嵌入式设备和高性能计算场景中占据着不可或缺的地位。本文将引导你了解如何使用C++库计算核心的音频特征——梅尔频率倒谱系数(MFCCs),并进一步利用这些特征构建一个说话人识别(声纹识别)系统。Part1:在C/C++中计算MFCCs直接从零开始实现MFCC的所有计算
- 微软ASR与开源模型分析
老兵发新帖
microsoft开源
一、微软ASR核心能力1.支持场景场景功能实时语音转文本低延迟流式识别(会议字幕/直播转录)音频文件转文本支持多种格式(WAV/MP3等),批量处理长音频定制化模型针对特定行业术语(医疗/金融)训练专属模型多语言混合识别中英文混合、方言识别(如中文普通话+粤语)说话人分离区分不同发言人(声纹识别)2.关键性能指标识别准确率:中文普通话>95%(安静环境)英文>96%(MicrosoftResear
- 鸿蒙开发实战之Audio Kit打造美颜相机沉浸式音效
harmonyos-next
一、核心音频场景通过AudioKit实现三大声音增强:视频录制音质优化智能降噪(环境噪音降低30dB)声场增强(采样率48kHz/24bit)语音交互升级美颜参数语音控制(支持中英文混合指令)声纹识别解锁高级功能沉浸式播放体验3D环绕音效(HRTF头部追踪)视频回放自动匹配BGM节奏二、关键技术实现importaudiofrom'@ohos.audioKit';//配置录音参数audio.setR
- 鸿蒙OS&UniApp声纹识别与语音验证:打造安全可靠的跨平台语音应用#三方框架 #Uniapp
淼学派对
uniapp鸿蒙osharmonyosuni-app华为
UniApp声纹识别与语音验证:打造安全可靠的跨平台语音应用在当今移动应用开发领域,声纹识别和语音验证技术正在成为越来越重要的生物认证方式。本文将深入探讨如何在UniApp框架下实现高质量的声纹识别与语音验证功能,特别关注鸿蒙系统(HarmonyOS)的适配与优化。技术背景声纹识别技术通过分析说话人的声音特征来进行身份验证,具有非接触、便捷、安全等优势。在UniApp跨平台开发中,我们需要考虑不同
- 多因素身份鉴别组合方案及应用场景
Waitccy
安全网络等级保护
目录一、基于"Iknow+Ihave"的组合方案1.账号+密码+手机短信验证码2.账号+密码+USB-key(硬件令牌)3.账号+密码+动态令牌(Token)二、基于"Iknow+Mine"的组合方案1.账号+密码+生物特征(指纹/人脸)2.账号+密码+声纹识别三、基于"Ihave+Mine"的组合方案1.USB-key+生物特征(指纹/人脸)2.手机短信验证码+人脸活体检测四、组合方案设计原则五
- AI人工智能语音识别在金融风控中的应用
AI智能探索者
人工智能语音识别ai
AI人工智能语音识别在金融风控中的应用关键词:语音识别、金融风控、AI人工智能、声纹识别、自然语言处理、欺诈检测、深度学习摘要:本文深入探讨了AI语音识别技术在金融风控领域的创新应用。我们将从核心技术原理出发,详细分析声纹识别、情感分析和语义理解等技术如何协同工作,构建智能金融风控系统。文章包含完整的算法实现、数学模型解析和实际案例演示,并展望了该领域未来的发展趋势和技术挑战。1.背景介绍1.1目
- 值得推荐的智能外呼系统
MARS_AI_
信息与通信人工智能自然语言处理
国内智能外呼系统腾讯云外呼系统:性能稳定:基于云计算,具备强大的呼叫处理能力和高清晰度通话质量,支持多种拨打方式。安全性高:技术支持金融级安全加密,保障企业数据安全。功能丰富:智能语音识别与合成技术提升外呼效率,支持多语言外呼,且能与主流CRM系统无缝集成,帮助实现全流程自动化营销,适用于多种行业场景。百度智能外呼:技术先进:利用NLP语义分析和语音合成技术,支持多轮对话与客户意图识别,声纹识别技
- “智能安全防护:智能枪弹柜,保障您的武器安全“
lkone(立控)
安全
智能枪弹柜是一种用于存放枪支弹药的智能化设备,主要应用于公安、武警、部队、金融、检察院、法院等涉枪单位,以下将从其功能特点、系统组成、优势等维度展开介绍:功能特点身份识别功能:采用多种生物识别技术,如指纹识别、指静脉识别、虹膜识别、人脸识别、声纹识别等,“严格限制只有授权人员能够打开枪弹柜”。有的还支持双因子认证,如人脸识别+指纹解锁,进一步提高安全性。实时监控功能:通过高精度传感器和先进的数据分
- DeepSeek全栈接入指南:从零到生产环境的深度实践
量子纠缠BUG
DeepSeek部署AIDeepSeek人工智能深度学习机器学习
第一章:DeepSeek技术体系全景解析1.1认知DeepSeek技术生态DeepSeek作为新一代人工智能技术平台,构建了覆盖算法开发、模型训练、服务部署的全链路技术栈。其核心能力体现在:1.1.1多模态智能引擎自然语言处理:支持文本生成(NLG)、语义理解(NLU)、情感分析等计算机视觉:提供图像分类、目标检测、OCR识别等CV能力语音交互:包含语音识别(ASR)、语音合成(TTS)及声纹识别
- 行业洞察 | 你的耳机能进行骨传导声纹识别吗?
Magic Data
机器翻译人工智能
随着人工智能的发展,对于声纹识别很多人已不陌生。声纹识别是将声信号转换成电信号,再通过计算机进行识别。不同的任务和应用会使用不同的声纹识别技术,如缩小刑侦范围时可能需要辨认技术,而银行交易时则需要确认技术。此前小米推出的降噪耳机4Pro采用了骨声纹降噪的方式,支持通话降噪功能。其实骨声纹早在2020年就装载在华为FreeBuds3上发行过。但很多人依然不知道何为骨声纹识别?骨声纹识别之于我们普通的
- 基于“感知–规划–行动”的闭环系统架构
由数入道
人工智能系统架构人工智能智能体
1.感知(Perception)1.1多模态数据采集与预处理传感器系统Agent的感知层通常由多种传感器组成,支持采集多种形式的数据:视觉:采用摄像头、深度传感器,通过卷积神经网络(CNN)、视觉Transformer等模型实现目标检测、图像分类、场景理解。听觉:利用麦克风阵列、声学传感器,结合声纹识别、语音识别(如基于Transformer或RNN的模型)技术处理音频信息。文本与语义信息:通过文
- YeAudio音频工具的介绍和使用
夜雨飘零1
语音音视频语音识别pythonffmpeg
夜雨飘零音频工具这款Python音频处理工具功能强大,支持读取多种格式的音频文件。它不仅能够对音频进行裁剪、添加混响、添加噪声等多种处理操作,还广泛应用于语音识别、语音合成、声音分类以及声纹识别等多个项目领域。安装使用pip安装。pipinstallyeaudio-U-ihttps://pypi.tuna.tsinghua.edu.cn/simple(推荐)使用源码安装。gitclonehttps
- 音频播放器
最美下雨天
验证的例子:打印ffmpeg支持的所有解码器,解码音视频、字幕image.pngimage.png在声纹识别中,为了满足对不同采样率的要求,常需要对语音进行重采样。重采样即将原始的采样频率变换为新的采样频率以适应不同采样率的要求。image.pngimage.pngJNI在加载的时候会自动调用这个方法image.png什么是重采样呢?就是我们要播放的音频数据的编码格式不一样,比如说采样率、采样位数
- ABeam×StartUp丨ABeam旗下德硕管理咨询(深圳)新创部门拜访「声扬科技」,解密声音的秘密
陵门检录
科技
随着人工智能的快速发展,音频处理、语音分析、声纹识别等技术的应用也日益扩充至各个方面,这些技术不仅是前沿领域的高新科技,也与我们的生活息息相关。近日,ABeam旗下德硕管理咨询(深圳)有限公司(以下简称“ABeam-SZ”)新创部门一行拜访了深圳声扬科技有限公司(以下简称“声扬科技”),深入了解音频处理、语音分析和声纹识别技术的发展近况及在各行业的应用,在未来可行性等方面进行交流探讨,并结合ABe
- 2023年12月27日学习记录_加入噪声
郭小儒
每日学习总结学习python人工智能
目录1、今日计划学习内容2、今日学习内容1、addnoisetoaudioclipssignaltonoiseratio(SNR)加入additivewhitegaussiannoise(AWGN)加入realworldnoises2、使用kaggel上的一个小demo:CNN模型运行时出现的问题调整采样率时出现bug3、明确90dB下能否声纹识别4、流量预测3、实际完成的任务1、今日计划学习内容
- 声纹识别_加入噪声
郭小儒
声纹识别机器学习人工智能学习语音识别
目录1、addnoisetoaudioclipssignaltonoiseratio(SNR)2、加入additivewhitegaussiannoise(AWGN)1.howtogenerateAWGN2.AWGN的频率分析3.加入噪声3、加入realworldnoises1、addnoisetoaudioclips学习如何将噪声加入到audiodata中,后续可以将不同SNR的噪声加入原始信号
- 声纹识别资源汇总(不断更新)
郭小儒
声纹识别学习pandaspython语音识别深度学习机器翻译
目录一、任务说明二、指标三、声纹识别研究现状四、数据集开源(1)VoxCeleb:(2)WSJandLibriSpeechCorpus(3)VOiCESDataset(4)EnglishMulti-speakerCorpusforVoiceCloning五、开源代码1、Alize2、MSRIdentityToolkit3、d-vector4、LSTMwithGE2Eloss5、y-vector调研
- 2023年12月20日学习总结
郭小儒
学习数据库
今日todolist:学习kaggle中storesales中的dartforcasting大概搜集一个声纹识别的报告(老师给的新项目)学习时不刷手机okkkkkkkkkkkkkk开始目录1.时间序列预测-acompleteguide(1)时序预测有三条规则:(2)时序数据timeseriesdata的组成(3)分析的流程1.importlibraries2.导入数据并且初步查看数据3.EDA:e
- 基于d-vector的声纹识别(作为初学者的小总结)
郭小儒
声纹识别python人工智能
基于d-vector的声纹识别(作为初学者的小总结)——2023年12月22日目录基于d-vector的声纹识别(作为初学者的小总结:wink:)——2023年12月22日0、简要介绍1、数据data2、数据预处理3、数据增强dataaugmentation(1)增加白噪声addingwhitenoise(2)更改音高changingpitch(3)增加背景噪声4、创建模型0、简要介绍目的是使用d
- 音频特效生成与算法 3
_Rye_
音频技术音视频语音识别人工智能
15|AI变声:音频AI技术的集大成者AI技术在音频领域发展十分迅速。除了之前介绍的降噪、回声消除以及丢包补偿等方向可以用AI模型来提升音质听感之外,AI模型还有很多有趣的应用。其中比较常见的有ASR(AutomaticSpeechRecognition)可以理解为语音转文字,TTS(TextToSpeech)文字转语音和VPR(VoicePrintRecognition)声纹识别等。在之前说的音
- Speaker Verification,声纹验证详解——语音信号处理学习(九)
LotusCL
声音信号处理学习信号处理学习语音识别人工智能
参考文献:SpeakerVerification哔哩哔哩bilibili2020年3月新番李宏毅人类语言处理独家笔记声纹识别-16-知乎(zhihu.com)(2)MetaLearning–Metric-based(1/3)-YouTube如何理解等错误率(EER,EqualErrorRate)?请不要只给定义-知乎(zhihu.com)本次省略所有引用论文目录一、Introduction模型的简
- 最强大脑第二场战平听音神童!百度大脑小度声纹识别技术解析
付江
百度人工智能
日前,继在江苏卫视《最强大脑》第四季“人机大战”首轮任务跨年龄人脸识别竞赛中击败人类顶级选手后,在上周五晚上,百度的小度机器人再次在声纹识别任务上迎战名人堂选手——11岁的“听音神童”孙亦廷,双方最终以1:1打成平手。被称为“鬼才之眼”的水哥(王昱珩)宣布再度出山,将在下周的第三轮比赛中与“小度”在图像识别方面一决高下。本轮题目规则为:从“千里眼”到“顺风耳”,节目组将第二场比赛范围划定在“听”的
- 2023CPEM电力人工智能大会,联丰迅声斩获“声纹识别技术创新奖”
科技赋能生活
人工智能
没有什么能够阻挡人类对美好未来的向往。11月的贵阳,秋色宜人,天高水远。电力大咖齐聚美丽的林城,聚焦电力人工智能高质量发展之路,碰撞创新智慧,畅想绿色未来。2023年11月3日,第4届电力人工智能大会暨第2届电力行业数字化转型大会在贵州贵阳圆满落下帷幕。本届大会由CPEM全国电力设备管理网、国家能源智能电网(上海)研发中心、复杂能源系统智能计算教育部工程研究中心、中国电子劳动学会双碳和能源创新工作
- 说话人识别声纹识别CAM++,ECAPA-TDNN等算法
loong_XL
深度学习语音识别
参考:https://www.modelscope.cn/models?page=1&tasks=speaker-verification&type=audiohttps://github.com/alibaba-damo-academy/3D-Speaker/blob/main/requirements.txt单个声纹比较可以直接modelscope包运行frommodelscope.pipel
- 基于深度学习的语音识别系统构建
周南音频科技教育学院(AI湖湘学派)
音频算法设计研究开发语音识别人工智能信号处理
加我微信hezkz17进数字音频系统研究开发交流答疑(课题组)项目内容:1.语音识别系统构建:负责基于kaldi的混合语音识别模型系统的构建,包括训练数据的搜集与处理,模型训练测试、rescore解码流程和上线部署等;2.声纹识别系统构建:使用cnn+aam-softmax的模型结构提取说话人声纹特征(embedding),然后在声纹库内进行声纹相似度的检索匹配;3.语种识别算法:使用类似声纹识别
- 多分类loss学习记录
weixin_43870390
分类学习数据挖掘
这里简单的记录在人脸识别/声纹识别中常用的分类loss。详细原理可以参考其他博客。扩展资料1扩展资料2L-softmaxA-softmaxAM-softmaxL-softmax:基于softmax加入了margin,Wx改写为||w||||x||cos(角度),将角度变为了m角度A-softmax:a=Angular,归一化||w||为1,b=0,W*x变成了cos(theta),只优化角度AM-
- 进阶课1——声纹识别
AI 智能服务
AI训练师人工智能语音识别深度学习人机交互搜索引擎
声纹识别是一种生物识别技术,也称为说话人识别,包括说话人辨认和说话人确认两种技术。该技术通过将声信号转换成电信号,再使用计算机进行识别,不同的任务和应用会使用不同的声纹识别技术,例如在缩小刑侦范围时可能需要辨认技术,而在银行交易时则需要确认技术。1.概述2.声纹识别原理声纹识别的技术原理可以分为两个主要步骤:特征提取和模式匹配(模式识别)。在特征提取阶段,声纹识别系统会提取并选择对说话人的声纹具有
- 声纹识别与声源定位(一)
shadowismine
语音识别
针对目前智能计算机及大规模数据的发展,依据大脑处理语音、图像数据方法的deeplearning技术应运而生。deeplearning技术是应用于音频信号识别,模仿大脑的语音信号学习、识别的模式。在音频信号处理的过程中,运用deeplearning进行音频数据的特征提取和训练,将大幅度提高音频信号识别的准确性。首先看下Speakerrecognition声纹识别,声纹是由人类的“发音机理”所产生的,
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟