- Serverless架构下Spring Function的创新实践
tmjpz04412
serverless架构spring
引言:Serverless与Spring生态的交汇背景介绍:云计算与Serverless架构的兴起Spring生态的演进与云原生适配性核心问题:传统Spring应用如何融入Serverless范式Serverless架构的核心特征与挑战事件驱动、弹性伸缩与按需计费冷启动问题与性能优化需求Spring应用在Serverless环境中的典型瓶颈(如依赖注入、上下文初始化)SpringFunction的
- 深入了解 Kubernetes(k8s):从概念到实践
目录一、k8s核心概念二、k8s的优势三、k8s架构组件控制平面组件节点组件四、k8s+docker运行前后端分离项目的例子1.准备前端项目2.准备后端项目3.创建k8s部署配置文件4.部署应用到k8s集群在当今云计算和容器化技术飞速发展的时代,Kubernetes(简称k8s)已成为容器编排领域的事实标准。无论是互联网巨头、传统企业还是初创公司,都在广泛采用k8s来管理和部署容器化应用。本文将带
- 基本服务 FTP & SMB
会飞的灰大狼
Centos7linux
基本服务FTP&SMB前言:FTP简称为文件传输协议前面说的他可以做到备份的功能那么它可以做到文件传输的过程smb我们简单来说共享文件夹NFSNFS(NetworkFileSystem,网络文件系统)是一种分布式文件系统协议,允许不同计算机之间通过网络共享文件和目录,使远程文件系统像本地文件系统一样被访问。它最初由SunMicrosystems开发,现在已成为UNIX/Linux系统中常用的网络
- Hive详解
一:Hive的历史价值1,Hive是Hadoop上的KillerApplication,Hive是Hadoop上的数据仓库,Hive同时兼具有数据仓库中的存储引擎和查询引擎的作用;而SparkSQL是一个更加出色和高级的查询引擎,所以在现在企业级应用中SparkSQL+Hive成为了业界使用大数据最为高效和流行的趋势。2,Hive是Facebook的推出,主要是为了让不动Java代码编程的人员也能
- 新一代数据库:融合多模智能,重塑数据价值
一、场景重塑产业格局:数据库“融合进化”AI浪潮奔涌而至,数字产业格局加速重构。云计算、移动互联、万物互联(IoT)、人工智能(AI)等技术的深度融合与快速落地,正以前所未有的速度重塑着企业的应用形态。新业务场景层出不穷——从高并发的在线交易、实时精准的分析决策,到海量物联网设备监控、基于图关系的风控反欺诈,再到AI驱动的智能推荐与内容生成,应用场景的多样性与复杂性已突破传统数据库的能力边界。这对
- 物联网与数字孪生:深度协同驱动智能未来 —— 专业规划分析
boyedu
物联网域名物联网区块链
一、定义与核心技术架构1.1物联网(IoT)的技术本质与架构定义:通过信息传感设备将物理对象与互联网连接,实现智能化识别、定位、跟踪和管理的网络。四层架构:感知层:传感器、RFID等设备采集物理数据(如温度、压力)。网络层:通过Wi-Fi、5G等通信技术传输数据,确保实时性与稳定性。平台层:云计算/边缘计算平台处理数据(如AWSIoT、AzureIoT)。应用层:提供终端服务(如智能家居、工业监控
- 边缘计算与云计算协同:未来架构的黄金组合
大力出奇迹985
边缘计算云计算架构
边缘计算与云计算的协同融合,正成为支撑未来智能社会的核心架构。本文从技术互补性、应用场景拓展、架构安全保障、性能优化路径和未来发展趋势五个维度,系统剖析二者协同的底层逻辑与实践价值。通过分析边缘节点的实时处理能力与云端的全局算力优势如何形成合力,探讨该架构在工业互联网、自动驾驶、智慧城市等领域的创新应用,并针对安全防护、资源调度等关键问题提出解决方案,最终总结其对数字经济发展的战略意义。一、技术互
- zookeeper和hadoop
zookeeper操作连接zkCli.sh-server服务名称查看客户端指令helpZooKeeper-serverhost:portcmdargs statpath[watch] setpathdata[version] lspath[watch] delquota[-n|-b]path ls2path[watch] setAclpathacl setquot
- Hadoop 之 ZooKeeper (一)
devalone
HadoopHadoopZooKeeperHbaseChubbyznode
Hadoop之ZooKeeper本文介绍使用Hadoop的分布式协调服务构建通用的分布式应用——ZooKeeper。ZooKeeper是Hadoop分布式协调服务。写分布式应用是比较难的,主要是因为部分失败(partialfailure).当一条消息通过网络在两个节点间发送时,如果发生网络错误,发送者无法知道接受者是否接收到了这条消息。接收者可能在发生网络错误之前已经收到了这条消息,也可能没有收到
- ZooKeeper在Hadoop中的协同应用:从NameNode选主到分布式锁实现
码字的字节
hadoop布道师分布式zookeeperhadoop分布式锁
Hadoop与ZooKeeper概述Hadoop与ZooKeeper在大数据生态系统中的核心位置和交互关系Hadoop的架构与核心组件作为大数据处理的基石,Hadoop生态系统由多个关键组件构成。其核心架构主要包含HDFS(HadoopDistributedFileSystem)和YARN(YetAnotherResourceNegotiator)两大模块。HDFS采用主从架构设计,由NameNo
- 阿里云服务器购买参考,适合个人和普通企业用户的阿里云服务器推荐
阿里云最新优惠和活动汇总
无论是个人开发者、初创企业,还是已经成熟的公司,只要有建站,做APP,存储数据等需要就需要一台云服务器。阿里云针对不同用户的需求推出了多款云服务器产品。本文将重点介绍适合个人和普通企业用户的阿里云服务器,帮助您找到性价比最高的云计算解决方案。一、阿里云服务器的用户群体阿里云服务器的用户主要可以分为三类:个人用户、普通企业用户以及对云服务器性能有特殊需求的集团型企业级用户。对于不同类型的用户,阿里云
- AI浪潮涌,数据库“融合智能”奏响产业新乐章
可涵不会debug
AI赋能人工智能数据库
一、场景重塑产业格局:数据库“融合进化”AI浪潮奔涌而至,数字产业格局加速重构。云计算、移动互联、万物互联(IoT)、人工智能(AI)等技术的深度融合与快速落地,正以前所未有的速度重塑着企业的应用形态。新业务场景层出不穷——从高并发的在线交易、实时精准的分析决策,到海量物联网设备监控、基于图关系的风控反欺诈,再到AI驱动的智能推荐与内容生成,应用场景的多样性与复杂性已突破传统数据库的能力边界。这对
- 云成本管理技术深度解析:核心原理与最佳实践
TechVision大咖圈
云成本管理成本优化云计算自动化运维预算控制资源管理
在这个"云"满天飞的时代,钱包也跟着飞?别慌!本文带你深入云成本管理的世界,让你的云账单不再成为"惊喜"。关键词:云成本管理、成本优化、云计算、资源管理、预算控制、自动化运维文章目录1.引言:云成本管理的重要性2.云成本管理核心原理2.1成本可见性原理2.2资源优化原理2.3预算控制原理3.技术架构深度解析3.1数据收集层3.2分析处理层3.3决策执行层4.最佳实践指南4.1成本监控体系建设4.2
- 数据库融合进化:AI驱动下的数字化转型新纪元
颜颜yan_
前沿科技产品测评数据库人工智能
一、场景重塑产业格局:数据库“融合进化”AI浪潮奔涌而至,数字产业格局加速重构。云计算、移动互联、万物互联(IoT)、人工智能(AI)等技术的深度融合与快速落地,正以前所未有的速度重塑着企业的应用形态。新业务场景层出不穷——从高并发的在线交易、实时精准的分析决策,到海量物联网设备监控、基于图关系的风控反欺诈,再到AI驱动的智能推荐与内容生成,应用场景的多样性与复杂性已突破传统数据库的能力边界。这对
- 融合与智能:AI时代数据库的演进新范式与产业格局重塑
意疏
测评人工智能数据库
一、场景重塑产业格局:数据库“融合进化”AI浪潮奔涌而至,数字产业格局加速重构。云计算、移动互联、万物互联(IoT)、人工智能(AI)等技术的深度融合与快速落地,正以前所未有的速度重塑着企业的应用形态。新业务场景层出不穷——从高并发的在线交易、实时精准的分析决策,到海量物联网设备监控、基于图关系的风控反欺诈,再到AI驱动的智能推荐与内容生成,应用场景的多样性与复杂性已突破传统数据库的能力边界。这对
- 在阿里云服务器上搭建单节点Kubernetes集群的完整指南与故障排除
老牛十八岁SYZ
Kubernetes阿里云服务器kubernetes
在阿里云服务器上搭建单节点Kubernetes集群的完整指南与故障排除在云计算和容器化技术日益普及的今天,Kubernetes(简称K8s)已成为容器编排的事实标准。本文将以阿里云服务器(AlibabaCloudLinux)为例,详细介绍如何搭建单节点Kubernetes集群,并针对实际操作中可能遇到的典型问题提供系统性解决方案。【阿里云限时特惠】云产品低至38元/年起!各位技术伙伴,阿里云爆款钜
- 大数据开发系列(六)----Hive3.0.0安装配置以及Mysql5.7安装配置
Xiaoyeforever
hivemysqlhivehadoop数据库
一、Hive3.0.0安装配置:(Hive3.1.2有BUG)hadoop3.1.2Hive各个版本下载地址:http://archive.apache.org/dist/hive/,这里我们下载hive3.0.01、解压:tar-xzvfapache-hive-3.0.0-bin.tar.gz-C/usr/lib/JDK_2021cd/usr/lib/JDK_20212.改名称.将解压以后的文件
- 大数据编程基础
芝麻开门-新的起点
大数据大数据
3.1Java基础(重点)内容讲解Java是大数据领域最重要的编程语言之一。Hadoop、HBase、Elasticsearch等众多核心框架都是用Java开发的。因此,扎实的Java基础对于深入理解这些框架的底层原理和进行二次开发至关重要。为什么Java在大数据领域如此重要?生态系统:Hadoop生态系统原生就是Java构建的,使用Java进行开发可以无缝集成。跨平台性:Java的“一次编译,到
- 数字经济时代全产业链详解
数字经济全产业链概述数字经济全产业链涵盖从底层技术到终端应用的完整生态,包括基础技术层、核心产业层、融合应用层和支撑服务层。以下是详细拆解:基础技术层1.硬件基础设施芯片与半导体:CPU、GPU、AI芯片(如NPU)等,支撑算力需求。通信设备:5G基站、光纤网络、卫星互联网等。数据中心:云计算服务器、边缘计算节点、绿色数据中心(如液冷技术)。2.软件与平台操作系统:鸿蒙、Windows、Linux
- GaussDB云数据库SQL应用系列-视图管理
没有星期叭
数据库gaussdbsql
一、前言GaussDB是一款基于云计算技术的高性能关系型数据库,支持多种数据模型和分布式架构。在GaussDB中,视图管理是非常重要的一项功能,它可以帮助用户更方便地管理和查询数据。数据库视图管理是指对数据库中的视图进行创建、修改、删除、查询等操作的过程。二、准备条件参考上一篇文章《GaussDB云数据库SQL应用系列-基础使用》1、登录华为云数据库GaussDB2、选择对应实例并进入到SQL执行
- 深入解析HBase如何保证强一致性:WAL日志与MVCC机制
码字的字节
hadoop布道师hadoopHBaseWALMVCC
HBase强一致性的重要性在分布式数据库系统中,强一致性是确保数据可靠性和系统可信度的核心支柱。作为Hadoop生态系统中关键的列式存储数据库,HBase需要处理金融交易、实时风控等高敏感场景下的海量数据操作,这使得强一致性成为其设计架构中不可妥协的基础特性。分布式环境下的数据一致性挑战在典型的HBase部署环境中,数据被分散存储在多个RegionServer节点上,同时面临以下核心挑战:1.跨节
- Hadoop中MapReduce和Yarn相关内容详解
接上一章写的HDFS说,Hadoop是一个适合海量数据的分布式存储和分布式计算的一个平台,上一章介绍了分布式存储,这一章介绍一下分布式计算——MapReduce。一、MapReduce设计理念map——>映射Reduce——>归纳mapreduce是一种必须构建在hadoop之上的大数据离线计算框架。因为mapreduce是给予磁盘IO来计算存储文件的,所以它具有一定的延时性,因此一般用来处理离线
- 训练效率提升100%!阿里云后训练全栈解决方案发布实录
阿里云大数据AI技术
人工智能深度学习大模型大数据强化学习云计算
演讲人:魏博文(阿里云计算平台大数据AI解决方案总监)演讲主题:阿里云后训练解决方案活动:甲子光年围炉夜话-后训练技术闭门会目前大模型能力已经足够优秀,模型后训练作为大模型落地的重要一环,能显著优化模型性能,适配特定领域需求。相比于模型预训练,后训练阶段对计算资源和数据资源需求更小,更易迭代,为大语言模型提供了针对特定业务场景调优的能力,打通了通用大模型到垂直领域应用的"最后一公里"。阿里云大数据
- 阿里云MaxCompute SQL与Apache Hive区别面面观
大模型大数据攻城狮
阿里云odpssql物化maxcomputeudf开发sql语法
目录1.引爆开场:MaxCompute和Hive,谁才是大数据SQL的王者?2.架构大比拼:从Hadoop到Serverless的进化之路Hive的架构:老派但经典MaxCompute的架构:云原生新贵3.SQL语法的微妙差异:90%相似,10%决定胜负建表语句分区与分桶函数与UDF4.执行引擎的较量:MapReducevs飞天引擎Hive的MapReduce执行流程MaxCompute的飞天引擎
- 一文说清楚Hive
Hive作为ApacheHadoop生态的核心数据仓库工具,其设计初衷是为熟悉SQL的用户提供大规模数据离线处理能力。以下从底层计算框架、优点、场景、注意事项及实践案例五个维度展开说明。一、Hive底层分布式计算框架对比Hive本身不直接执行计算,而是将HQL转换为底层计算引擎的任务。目前支持的主流引擎及其特点如下:计算引擎核心原理优点缺点适用场景MapReduce基于“Map→Shuffle→R
- 数据库如何应对场景挑战?电科金仓 “融合智能” 范式给出答案!
澪贰
话题数据库
文章目录一、场景重塑产业格局:数据库“融合进化”二、多模数据融合:打破数据藩篱,激发内在价值三、多架构随需应变:业务驱动的灵活底座四、多语法兼容:平滑迁移的“无痛”实践五、智能注入:运维自治与效能跃升的未来六、融合·智能:数据库演进新范式一、场景重塑产业格局:数据库“融合进化”AI浪潮奔涌而至,数字产业格局加速重构。云计算、移动互联、万物互联(IoT)、人工智能(AI)等技术的深度融合与快速落地,
- HBase 简介
HBase简介什么是HBaseApacheHBase是Hadoop数据库,一个分布式的、可伸缩的大数据存储。当您需要对大数据进行随机的、实时的读/写访问时,请使用ApacheHBase。这个项目的目标是在商品硬件的集群上托管非常大的表——数十亿行百万列的列。ApacheHBase是一个开源的、分布式的、版本化的、非关系的数据库,它模仿了Google的Bigtable:一个结构化数据的分布式存储系统
- 架构师深度研究报告:职责、技能与职业发展
萧十一郎@
深度研究人工智能
目录一、引言1.1研究背景与目的1.2架构师的定义与起源二、架构师的职责2.1技术职责2.1.1系统架构设计2.1.2技术难题解决与性能优化2.1.3新技术研究与应用2.2组织职责2.2.1团队协作与沟通2.2.2技术团队领导与指导三、架构师的技能要求3.1技术技能3.1.1编程与多语言能力3.1.2框架与工具掌握3.1.3数据库与云计算技术3.2软技能3.2.1逻辑与抽象思维能力3.2.2沟通与
- sqoop的几个注意参数
yayooo
vimsqoop_export.shsqoop导出脚本:#!/bin/bashdb_name=gmallexport_data(){/opt/module/sqoop/bin/sqoopexport\--connect"jdbc:mysql://hadoop102:3306/${db_name}?useUnicode=true&characterEncoding=utf-8"\--username
- AWS CAF:企业云转型的战略指南
在数字化转型的大潮中,企业正面临前所未有的变革压力。如何利用云计算驱动业务创新、提升IT敏捷性、优化成本结构,已成为众多企业迫切需要解决的关键课题。然而,云迁移并不是简单地将本地应用“复制”到云上,它是一项牵涉企业组织架构、流程治理、人员能力与技术堆栈的系统性工程。为了帮助企业有序、安全、可持续地推进云上转型,AmazonWebServices(AWS)推出了CloudAdoptionFramew
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,