15周作业-sklearn

题目:

15周作业-sklearn_第1张图片

15周作业-sklearn_第2张图片

题目大意是这样的:生成一个数据集合,并且使用三种机器学习算法进行训练,并且根据训练结果使用三种方法评估三种算法的性能

步骤1:生成数据集合

使用make_classification函数生成一个数据集

dataset = datasets.make_classification( n_samples= 1000, n_features= 10)

步骤2.使用10-fold cross validdation对数据集合进行划分

kf = cross_validation.KFold( 1000, n_folds= 10, shuffle= True)
for train_index, test_index in kf:
X_train, y_train = dataset[ 0][train_index], dataset[ 1][train_index]
X_test, y_test = dataset[ 0][test_index], dataset[ 1][test_index]
d = GaussianNB_clf.predict(X_test)步骤3:使用三种方法对数据集合进行训练

1.高斯NB

\\

GaussianNB_clf = GaussianNB()
GaussianNB_clf.fit(X_train, y_train)
GaussianNB_pred = GaussianNB_clf.predict(X_test)

2.SVM

SVC_clf = SVC( C= 1e-01, kernel= 'rbf', gamma= 0.1)
SVC_clf.fit(X_train, y_train)
SVC_pred = SVC_clf.predict(X_test)

3.随机森林

Random_Forest_clf = RandomForestClassifier( n_estimators= 6)
Random_Forest_clf.fit(X_train, y_train)
Random_Forest_pred = Random_Forest_clf.predict(X_test)

步骤4:对性能进行评价

分别使用accuracy_score,fi_score,roc_auc_score得到准确度

15周作业-sklearn_第3张图片

可以看到综合来看随机树的效果是最好的

你可能感兴趣的:(15周作业-sklearn)