- 深入理解卷积神经网络(CNN)与循环神经网络(RNN)
CodeJourney.
cnnrnn人工智能
在当今的人工智能领域,神经网络无疑是最为璀璨的明珠之一。而卷积神经网络(ConvolutionalNeuralNetworks,CNN)和循环神经网络(RecurrentNeuralNetworks,RNN)作为神经网络家族中的重要成员,各自有着独特的架构和强大的功能,广泛应用于众多领域。本文将深入探讨这两种神经网络的原理、特点以及应用场景,为对深度学习感兴趣的读者提供全面的知识讲解。一、卷积神经
- 时序预测 | MATLAB实现贝叶斯优化CNN-GRU时间序列预测(股票价格预测)
Matlab机器学习之心
matlabcnngru
✅作者简介:热爱数据处理、数学建模、仿真设计、论文复现、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击主页:Matlab科研工作室个人信条:格物致知,期刊达人。内容介绍股票价格预测一直是金融领域一个极具挑战性的课题。其内在的非线性、随机性和复杂性使得传统的预测方法难以取得令人满意的效果。近年来,深度学习技术,特别是卷积神经网络(CNN)和门控循环单元(GRU)的结合,为时
- 时序预测 | MATLAB实现BO-CNN-GRU贝叶斯优化卷积门控循环单元时间序列预测
Matlab算法改进和仿真定制工程师
matlabcnngru
✅作者简介:热爱数据处理、数学建模、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击:Matlab科研工作室个人信条:格物致知。内容介绍时间序列预测在各个领域都具有重要的应用价值,例如金融市场预测、气象预报、交通流量预测等。准确地预测未来趋势对于决策制定至关重要。近年来,深度学习技术在时间序列预测领域取得了显著进展,其中卷积神经网络(CNN)和门控循环单元(GRU)由于其强
- 基于AlexNet架构的卷积神经网络模型用于对胸部X光图像进行二分类(例如,诊断肺炎)
1.肺炎正常的胸部X线片描绘了清晰的肺部,图像中没有任何异常混浊的区域。正常的胸部X线片1.1细菌性肺炎临床表现细菌性肺炎通常由细菌引起,如肺炎链球菌、流感嗜血杆菌、肺炎克雷伯菌等。患者可能出现高热、寒战、咳嗽、咳痰(痰液可能呈脓性)、胸痛、呼吸困难等症状。影像学特征局灶性肺叶实变细菌性肺炎在影像学上常表现为肺叶或肺段的局灶性实变,即某一区域的肺组织因炎症而失去气体交换功能,呈现为高密度影。胸腔积
- Python_day54Inception网络及其思考
且慢.589
Python_60python开发语言
一、inception网络介绍今天我们介绍inception,也就是GoogleNet传统计算机视觉的发展史从上面的链接,可以看到其实inceptionnet是在resnet之前的,那为什么我今天才说呢?因为他要引出我们后面的特征融合和特征并行处理这些思想。Inception网络,也被称为GoogLeNet,是Google团队在2014年提出的经典卷积神经网络架构。它的核心设计理念是“并行的多尺度
- 基于深度学习的图像分类:使用ShuffleNet实现高效分类
Blossom.118
机器学习与人工智能深度学习分类人工智能机器学习数据挖掘python目标检测
前言图像分类是计算机视觉领域中的一个基础任务,其目标是将输入的图像分配到预定义的类别中。近年来,深度学习技术,尤其是卷积神经网络(CNN),在图像分类任务中取得了显著的进展。ShuffleNet是一种轻量级的深度学习架构,专为移动和嵌入式设备设计,能够在保持较高分类精度的同时,显著减少计算量和模型大小。本文将详细介绍如何使用ShuffleNet实现高效的图像分类,从理论基础到代码实现,带你一步步掌
- MATLAB实现基于GA-CNN-BiLSTM-Attention遗传算法(GA)优化卷积双向长短期记忆神经网络融合注意力机制进行多变量时序预测的详细项目实例(含模型描述及示例代码)
nantangyuxi
MATLAB含模型描述及示例代码神经网络matlabcnn支持向量机人工智能大数据深度学习
目录MATLAB实现基于GA-CNN-BiLSTM-Attention遗传算法(GA)优化卷积双向长短期记忆神经网络融合注意力机制进行多变量时序预测的详细项目实例...2项目背景介绍...2项目目标与意义...31.提高多变量时序预测的准确性...32.弥补传统方法的局限性...33.提高模型训练效率...3
- GWO-CNN-BiLSTM-Attention多变量多步时间序列预测 | Matlab实现灰狼算法优化卷积双向长短期记忆融合注意力机制
✅作者简介:热爱数据处理、数学建模、仿真设计、论文复现、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击主页:Matlab科研工作室个人信条:格物致知,期刊达人。内容介绍摘要:时间序列预测在各个领域具有广泛的应用,而多变量多步时间序列预测由于其复杂性和挑战性,一直是研究热点。本文提出了一种基于灰狼算法(GreyWolfOptimizer,GWO)优化的卷积神经网络(Conv
- python实现特征检测算法4
闲人编程
图像处理python算法开发语言图像处理反卷积Lucy
python实现Richardson-Lucy反卷积算法Richardson-Lucy反卷积算法Richardson-Lucy算法的工作原理算法步骤Richardson-Lucy算法的优点与局限Richardson-Lucy反卷积的Python实现示例1.安装依赖库2.Python代码示例3.代码解析Python实现详细解释Richardson-Lucy算法的优缺点Richardson-Lucy算
- 14、基于无人机与CNN技术的森林研究:原木识别与冠层空隙分析
Sunny
计算科学前沿:ICCSA2021精选无人机CNN原木识别
基于无人机与CNN技术的森林研究:原木识别与冠层空隙分析基于CNN的原木识别研究近年来,基于单根原木追踪圆木的方法备受关注。此前的研究提出了一种基于原木端面图像的物理自由方法,借鉴了指纹和虹膜识别的技术,在使用真实分割数据时取得了不错的效果。但在实际应用中,需要一个完全自动化的系统。为了填补这一空白,研究采用了基于卷积神经网络(CNN)的分割方法与原木识别方法相结合的方式,并与传统原木识别方法在自
- 每天五分钟深度学习:数学中常见函数中的导数
每天五分钟玩转人工智能
每天五分钟玩转深度学习算法深度学习人工智能导数机器学习
本文重点导数是微积分学中的一个核心概念,它描述了函数在某一点附近的变化率。在物理学、工程学、经济学等众多领域中,导数都发挥着极其重要的作用。本文旨在详细介绍数学中常见函数的导数,以期为读者提供一个全面而深入的理解。数学中常见的导数常数函数的导数对于常数函数f(x)=C(C为常数),其导数为f'(x)=0。这是因为常数函数在任何点的切线斜率都是0,即函数值不随x的变化而变化。多项式函数的导数多项式函
- 讨论神经网络中的卷积与数学中的卷积有何不同
陶大明
1.当提到神经网络中的卷积时,我们通常是指由多个并行卷积组成的运算。(因为单个核只能特区一种类型的特征,我们usually希望可以在多个位置提取多个特征)2.输入也不仅仅是实值的网格,而是由一系列观测数据的向量构成的网格。我们有的时候会希望跳出核中的一些位置来降低计算的开销(相应的代价是提取特征没有先前那么好了)我们就把这个过程看作对全卷积函数输出的下采样(downsampling).如果只是在输
- opencv-day3-图像预处理
图像滤波所为图像滤波通过滤波器得到另一个图像什么是滤波器在深度学习中,滤波器又称为卷积核,滤波的过程成为卷积卷积核概念卷积核大小,一般为奇数,是为了保证锚点在中间,防止位置发生偏移的原因什么是锚点?卷积核大小的影响在深度学习中,卷积核越大,看到的信息越多,提取的特征越好,同时计算量越大图像平滑处理图像噪声的定义和性质图像噪声是指存在于图像数据中的不必要的或多余的干扰信息。它妨碍了人们通过视
- pytorch学习笔记-自定义卷积
墨染枫
深度学习pytorch学习笔记
未完结的草稿———!大概是准备整合一下常见的层,整合完感觉就可以进行搭建了(还没进行到这一步所以不太确定版)(ps我将在完结这一篇的时候删除上面的小字and二编一下整篇文章的结构,如果看到了这部分文字也是很有缘分了/doge这一部分感觉也没啥好说的==也就是reshape部分值得注意一下?剩下的感觉就是了解一下用法就可以importtorchimporttorch.nnasnnimporttorc
- 零基础-动手学深度学习-6.6 卷积神经网络(LeNet)
生医转码,四海为家
深度学习cnn人工智能
通过之前几节,我们学习了构建一个完整卷积神经网络的所需组件。回想一下现在我们已经掌握了卷积层的处理方法,我们可以在图像中保留空间结构。同时,用卷积层代替全连接层的另一个好处是:模型更简洁、所需的参数更少。本节将介绍LeNet,它是最早发布的卷积神经网络之一,于80年代发明的为了识别手写数字,LeCun发表了第一篇通过反向传播成功训练卷积神经网络的研究!6.6.1.LeNet我这里改了一下28-32
- 51、使用Inception V3模型进行智能图像识别
秃然暴富
云物联网技术引领社会5.0变革InceptionV3智能图像识别深度学习
使用InceptionV3模型进行智能图像识别1.引言随着智慧城市的发展,智能图像识别技术在多个领域得到了广泛应用,尤其是在医疗健康领域。InceptionV3模型作为一种高效的深度卷积神经网络,因其出色的准确性和效率,在图像分类任务中表现尤为突出。本文将详细介绍InceptionV3模型的实现,包括模型结构、实现步骤、代码示例以及应用场景,旨在帮助读者理解和应用这一先进技术。2.Inceptio
- 基于深度学习的图像分类:使用Inception-v3实现高效分类
Blossom.118
机器学习与人工智能深度学习分类人工智能机器学习数据挖掘计算机视觉python
前言图像分类是计算机视觉领域中的一个基础任务,其目标是将输入的图像分配到预定义的类别中。近年来,深度学习技术,尤其是卷积神经网络(CNN),在图像分类任务中取得了显著的进展。Inception-v3是一种高效的深度学习架构,通过引入多尺度特征提取和模块化设计,显著提高了模型的性能和效率。本文将详细介绍如何使用Inception-v3实现高效的图像分类,从理论基础到代码实现,带你一步步掌握基于Inc
- 探秘VCSI:一款创新的视觉内容识别工具
探秘VCSI:一款创新的视觉内容识别工具是一个基于深度学习的开源项目,其主要目标是帮助开发者和数据科学家进行高效、精确的视觉内容识别。在这个数字时代,我们每天都被大量的图像和视频所包围,VCSI提供了强大的工具,使得机器能够理解这些媒体内容,从而打开了一扇全新的应用之门。技术解析VCSI基于现代神经网络架构,特别是卷积神经网络(CNNs),用于图像特征提取。它利用预训练模型,如VGG16和ResN
- vivadoIP核FFT的使用
干饭不留名
fpga开发fpga
FFT配置讲解*(1)表示几个通道,这里我采用1024个点不同频率的正弦波。采用一通道(2)表示通道点的个数。(3)给FFT作用的时钟频率(4)从上到下。算法越来越简单。*(1)输入数据的格式,我选择的为定点,还有浮点数据格式。(2)选择算法类似上一张图的第四点。来考虑数据溢出。(3)类似四舍五入对数据进行截断,进行判断的。(4)输入数据的位宽。(5)低电平复位(6)有正序和倒序输出。我选择的正序
- FFT处理能力计算
FFT处理能力计算复数运算次数和实数运算次数之间的关系假设复数z1=a+bi,z2=c+di复数乘法:z1×z2=(a+bi)×(c+di)=(a×c-b×d)+(a×d+b×c)i,从上式可以看出1次复数乘法运算=4次实数乘法+2次实数加法(括号内1个减法和1个加法,共两个)。复数加法:z1+z2=(a+bi)+(c+di)=(a+c)+(b+d)i,从上式可以看出1次复数加法运算=2次实数加法
- 阿里云内容审核之图片审核 spring boot 项目
大佐不会说日语~
阿里云云计算安全springboot
内容审核-阿里云视觉智能开放平台阿里云的图片审核服务是一种高效的内容安全解决方案,用于自动检测和过滤图片中的不适当内容。以下是关于阿里云图片审核服务:审核方式:阿里云图片审核服务采用两种主要方式来检测图片内容:MD5比对:通过比较上传图片的MD5值与素材库中的MD5值来获取审核结果。卷积神经网络(CNN)技术:使用CNN技术进行特征提取、各部分特征汇总,并通过分类器预测识别来进行审核。内容安全服务
- 深入探讨 Transformer 模型架构
年纪轻轻头已凉
transformer深度学习人工智能
```html深入探讨Transformer模型架构深入探讨Transformer模型架构Transformer是一种革命性的神经网络架构,由Vaswani等人在2017年提出,并在自然语言处理(NLP)领域取得了显著的成功。与传统的循环神经网络(RNN)和卷积神经网络(CNN)不同,Transformer完全依赖于自注意力机制(Self-AttentionMechanism),这使得它在处理长序
- 【数据结构】第二章:线性表
云舒卷云
数据结构数据结构408线性表链表考研
本文引自【数据结构(C语言版)严蔚敏吴伟民】文章目录2.1线性表的类型定义2.2线性表的顺序表示和实现2.3线性表的链式表示和实现2.3.1线性链表2.3.2循环链表2.3.3双向链表2.4一元多项式的表示及相加2.1线性表的类型定义线性表(LinearList)线性表(LinearList)是由同类型数据元素构成的有限序列。在数学上,它表示为:L={a1,a2,a3,…,an}其中{a1,a2,
- Python实现基于BO-CNN-LSTM-Mutilhead-Attention贝叶斯优化算法(BO)优化卷积长短期记忆神经网络融合多头注意力机制进行多特征分类预测的详细项目实例(含模型描述及示例代
nantangyuxi
Python含模型描述及示例代码算法神经网络python人工智能大数据深度学习机器学习
目录Python实现基于BO-CNN-LSTM-Mutilhead-Attention贝叶斯优化算法(BO)优化卷积长短期记忆神经网络融合多头注意力机制进行多特征分类预测的详细项目实例...2项目背景介绍...2项目目标与意义...3高效的模型优化...3深度特征提取...3序列数据的时序建模...3
- 【论文精读】AGCRN-自适应图卷积循环神经网络
打酱油的葫芦娃
时序预测算法时空预测GCNGRUAGCRN交通预测
AGCRN模型是新南威尔士大学和悉尼科技大学的Bai等人发表在NeurIPS2020NeurIPS2020NeurIPS2020会议上的自适应图卷积循环神经网络,论文题目为:《AdaptiveGraphConvolutionalRecurrentNetworkforTrafficForecasting》,文章地址为:
- 【知识扫盲】per-token/per-channel/per-token量化
zjun3021
量化per-tokenper-channelter-tensor
per-token、per-channel和per-tensor量化的区别。这三种是模型量化中常见的不同粒度策略,主要区别在于它们应用量化的维度不同。以下是它们的详细对比:1.定义与核心区别量化类型量化维度主要应用对象计算粒度典型场景Per-Tensor整个张量权重/激活所有数据共享一组(scale,zero_point)简单硬件支持(如早期移动端)Per-Channel张量的每个通道权重(如卷积
- YOLO11优化:卷积魔改创新 | AAAI 2025 | 一种新颖的风车形卷积(PConv)符合微弱小目标的像素高斯空间分布,增强特征提取,显著增加接受野
芯作者
D2:YOLO人工智能YOLO深度学习人工智能计算机视觉
针对微弱小目标检测的世界性难题,AAAI2025最新研究提出革命性的风车形卷积(PConv),显著提升特征提取能力与感受野,让小目标无所遁形!引言:小目标检测的挑战与突破在计算机视觉领域,小目标检测一直是极具挑战性的任务。传统卷积神经网络在处理微小物体时往往表现不佳,主要原因有二:有限的特征表达能力和不足的感受野范围。当目标尺寸小于32×32像素时,检测精度会急剧下降。近期在AAAI2025上发表
- 60、深度学习的发展历程和应用领域【用Python进行AI数据分析进阶教程】
理工男大辉郎
python人工智能数据分析机器学习深度学习
用Python进行AI数据分析进阶教程60:深度学习的发展历程和应用领域关键词:深度学习、神经网络、卷积神经网络、自然语言处理、自动驾驶摘要:本文概述了深度学习的发展历程及其应用领域。从20世纪40年代的神经网络起源,到80年代反向传播算法的提出,再到21世纪初因数据爆炸和计算能力提升而复兴,深度学习经历了多个重要阶段。如今,各种深度学习模型如卷积神经网络(CNN)、循环神经网络(RNN)及其变体
- 2025暑期—06神经网络-常见网络2
宇称不守恒4.0
图像处理人工智能神经网络网络人工智能
ALEXNET11X11X3三维卷积核,步长为4第一层使用96个11X11X3的卷积核,最后得到的维度为55X55X9696个通道。第三个卷积、第四、第五是连续在一起做了。卷积有5层,池化有3层。通道数有空前提高。随着卷积向前,图像越来越小,通道越来越多。而且多次卷积再做一次池化。6X6X256=921611X11X3+1364*96=35K第一层是基本特征,然后是特征的组合,然后一点一点组合逐渐
- 焦点调制网络
AI浩
高质量人类CV论文翻译网络人工智能深度学习
摘要https://arxiv.org/pdf/2203.11926.pdf我们提出了焦点调制网络(简称FocalNets),其中自注意力(SA)被焦点调制模块完全取代,用于在视觉中建模令牌交互。焦点调制包含三个组件:(i)焦点上下文化,通过堆叠深度卷积层实现,以从短到长范围编码视觉上下文;(ii)门控聚合,用于选择性地收集上下文信息到每个查询令牌的调制器中;(iii)元素级仿射变换,将调制器注入
- java数字签名三种方式
知了ing
javajdk
以下3钟数字签名都是基于jdk7的
1,RSA
String password="test";
// 1.初始化密钥
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA");
keyPairGenerator.initialize(51
- Hibernate学习笔记
caoyong
Hibernate
1>、Hibernate是数据访问层框架,是一个ORM(Object Relation Mapping)框架,作者为:Gavin King
2>、搭建Hibernate的开发环境
a>、添加jar包:
aa>、hibernatte开发包中/lib/required/所
- 设计模式之装饰器模式Decorator(结构型)
漂泊一剑客
Decorator
1. 概述
若你从事过面向对象开发,实现给一个类或对象增加行为,使用继承机制,这是所有面向对象语言的一个基本特性。如果已经存在的一个类缺少某些方法,或者须要给方法添加更多的功能(魅力),你也许会仅仅继承这个类来产生一个新类—这建立在额外的代码上。
- 读取磁盘文件txt,并输入String
一炮送你回车库
String
public static void main(String[] args) throws IOException {
String fileContent = readFileContent("d:/aaa.txt");
System.out.println(fileContent);
- js三级联动下拉框
3213213333332132
三级联动
//三级联动
省/直辖市<select id="province"></select>
市/省直辖<select id="city"></select>
县/区 <select id="area"></select>
- erlang之parse_transform编译选项的应用
616050468
parse_transform游戏服务器属性同步abstract_code
最近使用erlang重构了游戏服务器的所有代码,之前看过C++/lua写的服务器引擎代码,引擎实现了玩家属性自动同步给前端和增量更新玩家数据到数据库的功能,这也是现在很多游戏服务器的优化方向,在引擎层面去解决数据同步和数据持久化,数据发生变化了业务层不需要关心怎么去同步给前端。由于游戏过程中玩家每个业务中玩家数据更改的量其实是很少
- JAVA JSON的解析
darkranger
java
// {
// “Total”:“条数”,
// Code: 1,
//
// “PaymentItems”:[
// {
// “PaymentItemID”:”支款单ID”,
// “PaymentCode”:”支款单编号”,
// “PaymentTime”:”支款日期”,
// ”ContractNo”:”合同号”,
//
- POJ-1273-Drainage Ditches
aijuans
ACM_POJ
POJ-1273-Drainage Ditches
http://poj.org/problem?id=1273
基本的最大流,按LRJ的白书写的
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
#define INF 0x7fffffff
int ma
- 工作流Activiti5表的命名及含义
atongyeye
工作流Activiti
activiti5 - http://activiti.org/designer/update在线插件安装
activiti5一共23张表
Activiti的表都以ACT_开头。 第二部分是表示表的用途的两个字母标识。 用途也和服务的API对应。
ACT_RE_*: 'RE'表示repository。 这个前缀的表包含了流程定义和流程静态资源 (图片,规则,等等)。
A
- android的广播机制和广播的简单使用
百合不是茶
android广播机制广播的注册
Android广播机制简介 在Android中,有一些操作完成以后,会发送广播,比如说发出一条短信,或打出一个电话,如果某个程序接收了这个广播,就会做相应的处理。这个广播跟我们传统意义中的电台广播有些相似之处。之所以叫做广播,就是因为它只负责“说”而不管你“听不听”,也就是不管你接收方如何处理。另外,广播可以被不只一个应用程序所接收,当然也可能不被任何应
- Spring事务传播行为详解
bijian1013
javaspring事务传播行为
在service类前加上@Transactional,声明这个service所有方法需要事务管理。每一个业务方法开始时都会打开一个事务。
Spring默认情况下会对运行期例外(RunTimeException)进行事务回滚。这
- eidtplus operate
征客丶
eidtplus
开启列模式: Alt+C 鼠标选择 OR Alt+鼠标左键拖动
列模式替换或复制内容(多行):
右键-->格式-->填充所选内容-->选择相应操作
OR
Ctrl+Shift+V(复制多行数据,必须行数一致)
-------------------------------------------------------
- 【Kafka一】Kafka入门
bit1129
kafka
这篇文章来自Spark集成Kafka(http://bit1129.iteye.com/blog/2174765),这里把它单独取出来,作为Kafka的入门吧
下载Kafka
http://mirror.bit.edu.cn/apache/kafka/0.8.1.1/kafka_2.10-0.8.1.1.tgz
2.10表示Scala的版本,而0.8.1.1表示Kafka
- Spring 事务实现机制
BlueSkator
spring代理事务
Spring是以代理的方式实现对事务的管理。我们在Action中所使用的Service对象,其实是代理对象的实例,并不是我们所写的Service对象实例。既然是两个不同的对象,那为什么我们在Action中可以象使用Service对象一样的使用代理对象呢?为了说明问题,假设有个Service类叫AService,它的Spring事务代理类为AProxyService,AService实现了一个接口
- bootstrap源码学习与示例:bootstrap-dropdown(转帖)
BreakingBad
bootstrapdropdown
bootstrap-dropdown组件是个烂东西,我读后的整体感觉。
一个下拉开菜单的设计:
<ul class="nav pull-right">
<li id="fat-menu" class="dropdown">
- 读《研磨设计模式》-代码笔记-中介者模式-Mediator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 中介者模式(Mediator):用一个中介对象来封装一系列的对象交互。
* 中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。
*
* 在我看来,Mediator模式是把多个对象(
- 常用代码记录
chenjunt3
UIExcelJ#
1、单据设置某行或某字段不能修改
//i是行号,"cash"是字段名称
getBillCardPanelWrapper().getBillCardPanel().getBillModel().setCellEditable(i, "cash", false);
//取得单据表体所有项用以上语句做循环就能设置整行了
getBillC
- 搜索引擎与工作流引擎
comsci
算法工作搜索引擎网络应用
最近在公司做和搜索有关的工作,(只是简单的应用开源工具集成到自己的产品中)工作流系统的进一步设计暂时放在一边了,偶然看到谷歌的研究员吴军写的数学之美系列中的搜索引擎与图论这篇文章中的介绍,我发现这样一个关系(仅仅是猜想)
-----搜索引擎和流程引擎的基础--都是图论,至少像在我在JWFD中引擎算法中用到的是自定义的广度优先
- oracle Health Monitor
daizj
oracleHealth Monitor
About Health Monitor
Beginning with Release 11g, Oracle Database includes a framework called Health Monitor for running diagnostic checks on the database.
About Health Monitor Checks
Health M
- JSON字符串转换为对象
dieslrae
javajson
作为前言,首先是要吐槽一下公司的脑残编译部署方式,web和core分开部署本来没什么问题,但是这丫居然不把json的包作为基础包而作为web的包,导致了core端不能使用,而且我们的core是可以当web来用的(不要在意这些细节),所以在core中处理json串就是个问题.没办法,跟编译那帮人也扯不清楚,只有自己写json的解析了.
- C语言学习八结构体,综合应用,学生管理系统
dcj3sjt126com
C语言
实现功能的代码:
# include <stdio.h>
# include <malloc.h>
struct Student
{
int age;
float score;
char name[100];
};
int main(void)
{
int len;
struct Student * pArr;
int i,
- vagrant学习笔记
dcj3sjt126com
vagrant
想了解多主机是如何定义和使用的, 所以又学习了一遍vagrant
1. vagrant virtualbox 下载安装
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
查看安装在命令行输入vagrant
2.
- 14.性能优化-优化-软件配置优化
frank1234
软件配置性能优化
1.Tomcat线程池
修改tomcat的server.xml文件:
<Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" maxThreads="1200" m
- 一个不错的shell 脚本教程 入门级
HarborChung
linuxshell
一个不错的shell 脚本教程 入门级
建立一个脚本 Linux中有好多中不同的shell,但是通常我们使用bash (bourne again shell) 进行shell编程,因为bash是免费的并且很容易使用。所以在本文中笔者所提供的脚本都是使用bash(但是在大多数情况下,这些脚本同样可以在 bash的大姐,bourne shell中运行)。 如同其他语言一样
- Spring4新特性——核心容器的其他改进
jinnianshilongnian
spring动态代理spring4依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- Linux设置tomcat开机启动
liuxingguome
tomcatlinux开机自启动
执行命令sudo gedit /etc/init.d/tomcat6
然后把以下英文部分复制过去。(注意第一句#!/bin/sh如果不写,就不是一个shell文件。然后将对应的jdk和tomcat换成你自己的目录就行了。
#!/bin/bash
#
# /etc/rc.d/init.d/tomcat
# init script for tomcat precesses
- 第13章 Ajax进阶(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Troubleshooting Crystal Reports off BW
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Troubleshooting+Crystal+Reports+off+BW#TroubleshootingCrystalReportsoffBW-TracingBOE
Quite useful, especially this part:
SAP BW connectivity
For t
- Java开发熟手该当心的11个错误
tomcat_oracle
javajvm多线程单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 正则表达式大全
yang852220741
html编程正则表达式
今天向大家分享正则表达式大全,它可以大提高你的工作效率
正则表达式也可以被当作是一门语言,当你学习一门新的编程语言的时候,他们是一个小的子语言。初看时觉得它没有任何的意义,但是很多时候,你不得不阅读一些教程,或文章来理解这些简单的描述模式。
一、校验数字的表达式
数字:^[0-9]*$
n位的数字:^\d{n}$
至少n位的数字:^\d{n,}$
m-n位的数字:^\d{m,n}$