- 驾乘场景下漏检率↓76%!陌讯动态特征融合算法在安全带穿戴识别中的实战优化
2501_92474779
人工智能目标跟踪计算机视觉算法目标检测
原创声明本文为原创技术解析,核心技术参数与架构设计引用自《陌讯技术白皮书》,禁止未经授权的转载与篡改。一、行业痛点:安全带穿戴识别的现实挑战据交通部2023年道路运输安全报告显示,货运车辆与网约车的安全带穿戴识别场景中,传统算法存在三大核心问题:复杂光照干扰:逆光场景下(如清晨/傍晚行车),安全带特征被强光淹没,误报率高达52%;动态遮挡难题:驾驶员衣物(如外套、背包)覆盖安全带时,漏检率常超35
- 棉田霉斑病难识别?陌讯跨季节检测方案误判率直降58%!
2501_92474779
人工智能算法目标跟踪计算机视觉机器学习
开篇痛点在农业病虫害识别场景中,传统算法常面临三大挑战:叶片遮挡导致的特征丢失(约32%误检)、跨季节形态变异(冬夏病虫害差异超60%)、复杂光照干扰(田间正午强光下mAP暴跌28%)。这些痛点使得许多农企不得不依赖人工筛查,每千亩农田质检成本高达¥5600。技术解析:多模态融合与自蒸馏架构陌讯视觉算法创新性地采用双流特征金字塔+自蒸馏机制解决上述问题:#核心代码片段(特征融合模块)classMu
- 夜间监控模糊不清?陌讯低光目标检测方案解读
2501_92474779
目标跟踪人工智能计算机视觉算法目标检测
开篇痛点:安防监控的检测困局在智慧城市建设浪潮下,安防监控面临核心矛盾:复杂场景中传统算法的泛化性短板日益凸显。某市级公安部门数据显示,夜间监控的误报率高达34%,雨雾天气下漏检率超40%。更严峻的是,密集人流场景中YOLOv5的ID丢失率达28%,实时预警几乎瘫痪——这恰是陌讯视觉算法v3.2的破局切入点。技术解析:三阶时空融合架构传统单帧检测在遮挡场景易失效,陌讯的创新在于时空联合建模:#陌讯
- 实时检测延迟超200ms?陌讯新框架FPS提速50%揭晓
2501_92474779
目标跟踪人工智能计算机视觉机器学习算法视觉检测
开篇痛点在现代安防监控场景中,实时目标检测(Real-timeObjectDetection)至关重要,但传统算法如FasterR-CNN或YOLOv5往往面临严峻挑战。实测数据显示:复杂环境下(如夜间低光照、人群密集区),漏检率(MissRate)高达15-20%,导致安全隐患;同时,检测延迟(Latency)常超过200ms,影响应急响应。例如,某城市交通监控系统报告,在雨雾天气中的车辆误报率
- 图像处理全栈指南:从传统算法到深度学习,再到FPGA移植
阿牛的药铺
图像算法区图像处理算法深度学习
图像处理全栈指南:从传统算法到深度学习,再到FPGA移植一、引言:图像处理是光学类产品的“大脑”光学类产品(可见光摄像头、红外热成像、光谱仪)的核心价值,在于将光信号转化为可理解的图像信息。而图像处理算法,就是解读这些信息的“大脑”——从传统的边缘检测到深度学习的目标识别,从实时降噪到高维光谱分割,每一步都决定了产品的性能(如分辨率、帧率、功耗)。对于算法移植工程师(科研助理1)岗位而言,需要掌握
- 高价值物品识别准确率↑91%!陌讯多模态融合算法在贵重物品鉴定中的优化实践
2501_92487837
python人工智能算法开发语言目标检测视觉检测
原创声明:本文核心技术解析部分引用自《陌讯视觉算法技术白皮书(2025)》,实测数据来自某珠宝鉴定中心合作项目,转载请注明来源。一、行业痛点:贵重物品识别的精准之困据《全球奢侈品安全白皮书》统计[6],高端珠宝展柜误报率高达35.2%,主要存在三大挑战:微观特征难捕捉:珠宝切面反射角>120°时,传统算法关键点漏检率激增至68%材质干扰严重:贵金属在射灯下产生的镜面反射(如图1)导致特征漂移安防响
- 秩序中的混沌与混沌中的秩序:旋转数组的搜索艺术与变位词组的模式密码
司铭鸿
算法前端数据结构矩阵开发语言
在算法的世界里,秩序与混沌的边界往往比想象中更模糊。当有序数组被旋转成"数字龙卷风",当字母组合在字符串中跳起"变位之舞",传统算法将遭遇前所未有的挑战。今日,我们将深入两个经典问题:搜索旋转数组(SearchinRotatedArray)与变位词组(GroupAnagrams)。它们一个在扭曲的有序结构中寻找目标索引,一个在字母的混沌排列中识别隐藏模式。二者在"数据重构"与"特征提取"的哲学层面
- 微算法科技(MLGO)基于 Grover 的量子算法在图形游戏中寻找纯纳什均衡的创新突破
MicroTech2025
科技量子计算
随着量子计算的迅猛发展,各行各业正积极探索其潜力,特别是在博弈论领域。在博弈论中,纳什均衡是描述多个参与者在游戏中选择策略时相互影响的一种状态。在很多情况下,找到纯纳什均衡并不容易,尤其是在复杂的图形游戏中。传统算法的计算复杂性常常导致求解时间过长,因此引入量子算法有助于提高效率。Grover搜索算法是一种有效的量子搜索算法,能够在未标记的数据库中以平方根的时间复杂度找到目标元素。它通过振幅放大技
- 3步实现安防高精度检测:陌讯算法夜间监控落地实战
2501_92474745
目标跟踪人工智能计算机视觉算法目标检测视觉检测
开篇痛点:安防监控系统在实时目标检测中常面临严峻挑战。实测数据显示,传统算法在低光、遮挡或动态场景下,泛化能力不足,导致平均误报率高达15%(数据来源:安防行业报告)。尤其在夜间或拥挤环境下,系统卡顿、漏检频发,不仅降低响应效率,还增加安全隐患。例如,某城市交通监控中心反馈,其开源模型在高密度人流中出现每秒帧率(FPS)骤降至20帧以下,引发报警延迟问题。这些问题根源在于算法鲁棒性和实时性不足,亟
- 头盔识别误报率高?陌讯YOLOv7优化方案实测准确率达99%!
开篇痛点:算法失效的致命时刻在智慧交通领域,电动车头盔识别长期面临三大痛点:漏检危机:行人遮挡、雨天反光导致传统算法漏检率高达15%(某头部车企实测数据)误报泛滥:相似物体(背包、安全帽)误识别率超20%实时性缺陷:开源模型在1080P视频流中处理延时>200ms,无法满足实时预警需求技术解析:陌讯算法三重创新架构graphTDA[双路输入]-->B[多尺度特征融合模块]B-->C[空间注意力机制
- 聚众识别漏检难题?陌讯多尺度检测实测提升 92%
一、开篇痛点:复杂场景下的聚众识别困境在安防监控、大型赛事等场景中,实时聚众识别是保障公共安全的核心技术。但传统视觉算法常面临三大难题:一是密集人群重叠导致小目标漏检率超30%,二是光照变化(如夜间逆光)引发误报率飙升,三是复杂背景干扰下实时性不足(FPS<15)。某景区监控项目曾反馈,开源模型在节假日人流高峰时,因漏检导致预警延迟达20秒,存在严重安全隐患。这些问题的根源在于传统算法的局限性:单
- 复杂场景检测老翻车?陌讯算法实测提升 40%
2501_92453489
算法视觉计算机视觉视觉检测
在工业质检、安防监控等计算机视觉落地场景中,工程师常面临棘手问题:传统算法在光照突变、目标遮挡等复杂环境下,漏检率高达20%以上,泛化能力不足成为项目落地的最大阻碍。而陌讯AI视觉算法通过架构创新,正在重新定义复杂场景下的检测精度标准。技术解析:从单模态到多模态的跨越传统目标检测模型多依赖单一RGB图像输入,在特征提取阶段容易受环境干扰。以经典的FasterR-CNN为例,其区域提议网络(RPN)
- 传统检测响应慢?陌讯多模态引擎提速90+FPS实战
2501_92473147
算法计算机视觉目标检测
开篇痛点:实时目标检测在安防监控中的核心挑战在安防监控领域,实时目标检测是保障公共安全的关键技术。然而,传统算法如YOLOv5或开源框架MMDetection常面临两大痛点:误报率高(复杂光照或遮挡场景下检测不稳定)和响应延迟(高分辨率视频流处理FPS低于30)。实测数据显示,城市交通监控系统误报率达15%,导致安保资源浪费;客户反馈表明,延迟超100ms时,目标跟踪可能失效。这些问题源于算法泛化
- 占道识别漏检率 30%?陌讯多模态算法实测优化
2501_92487926
算法ai计算机视觉视觉检测
开篇:占道经营识别的三大技术痛点在城市管理智能化进程中,占道经营自动识别系统常面临三大核心难题:一是早晚光线剧变导致传统模型mAP骤降15-20%;二是流动摊贩与行人的特征混淆,误判率高达28%;三是密集场景下检测速度跌破15FPS,无法满足实时性要求[1]。某一线城市试点数据显示,基于开源YOLOv5的识别系统日均漏检事件超300起,人工复核成本占总投入的42%。这些问题的根源在于传统算法采用单
- 【图像处理入门】12. 综合项目与进阶:超分辨率、医学分割与工业检测
小米玄戒Andrew
图像处理:从入门到专家图像处理人工智能深度学习算法python计算机视觉CV
摘要本周将聚焦三个高价值的综合项目,打通传统算法与深度学习的技术壁垒。通过图像超分辨率重建对比传统方法与深度学习方案,掌握医学图像分割的U-Net实现,设计工业缺陷检测的完整流水线。每个项目均包含原理解析、代码实现与性能优化,帮助读者从“技术应用”迈向“系统设计”。一、项目1:图像超分辨率重建(从模糊到清晰的跨越)1.技术背景与核心指标超分辨率(SR)是通过算法将低分辨率(LR)图像恢复为高分辨率
- 《2025年AI工程师生存报告:掌握Agent开发薪资涨65%》——500家科技企业招聘数据揭示的职场进化法则
知识产权13937636601
计算机人工智能科技
当大模型吞噬基础编码岗位,2025年掌握AI智能体(Agent)开发的工程师薪资中位数突破¥92万/年,较普通AI岗位高出65%。本文基于阿里、腾讯、微软等头部企业招聘数据,首次披露:技能断层危机:传统算法工程师简历淘汰率达73%能力跃迁公式:智能体架构+领域模型=薪资溢价150%职业生存矩阵:30岁未掌握AutoFlow开发面临40%裁员风险数据显示:具备多智能体协同架构能力者晋升总监级时间缩短
- 【图像处理入门】11. 深度学习初探:从CNN到GAN的视觉智能之旅
小米玄戒Andrew
图像处理:从入门到专家深度学习图像处理cnn计算机视觉CVGAN
摘要深度学习为图像处理注入了革命性动力。本文将系统讲解卷积神经网络(CNN)的核心原理,通过PyTorch实现图像分类实战;深入解析迁移学习的高效应用策略,利用预训练模型提升自定义任务性能;最后揭开生成对抗网络(GAN)的神秘面纱,展示图像生成与增强的前沿技术。结合代码案例与可视化分析,帮助读者跨越传统算法与深度学习的技术鸿沟。一、卷积神经网络(CNN)基础与实战1.CNN的核心组件与工作原理1.
- Raft协议解析:领导者选举与日志复制
小红的布丁
分布式分布式
引言在分布式一致性领域,Raft协议通过清晰的角色划分与确定性流程设计,以更易理解的方式解决了多节点协同一致性的核心挑战。该协议将系统节点明确分为领导者(Leader)、跟随者(Follower)和候选者(Candidate)三类角色,通过心跳驱动选举和日志强制同步两大核心机制,既规避了传统算法Paxos的复杂性,又保证了网络分区或节点故障时的快速恢复能力。其任期递增(Term)规则与多数派承诺(
- 医学影像基础与实践:基于传统算法的CT影像探索
t0_54program
大数据与人工智能算法个人开发
在医学影像领域,人们往往容易将目光聚焦于人工智能(AI)技术,然而,理解和掌握基础的图像处理算法同样至关重要。这不仅有助于我们深入了解医学影像的本质,还能在不依赖深度学习的情况下,明确其应用边界。本次,我们就一同通过实践教程,深入了解医学影像,特别是计算机断层扫描(CT)技术。CT成像基础CT扫描的物理学原理CT利用X射线束来获取人体的3D像素强度。具体来说,加热的阴极释放出高能电子束,这些电子束
- 深度学习篇---OC-SORT实际应用效果
Ronin-Lotus
深度学习篇上位机知识篇深度学习pythonOC-SROT
OC-SORT算法在实际应用中的效果可从准确性、鲁棒性、效率三个核心维度评估,其表现与传统多目标跟踪算法(如SORT、DeepSORT)相比有显著提升,尤其在复杂场景中优势突出。以下是具体分析:一、准确性:目标关联更可靠1.遮挡场景下的ID保持能力优势表现:传统算法(如SORT)依赖卡尔曼滤波预测目标位置,当目标长时间遮挡时,预测误差会累积导致轨迹丢失或ID切换。OC-SORT通过以观测为中心的恢
- [特殊字符] 基于深度强化学习的机器人路径规划优化方案:从理论到实战
2506_92092175
python
摘要本文提出一种融合深度确定性策略梯度(DDPG)与图卷积网络(GCN)的混合架构,针对高动态环境下移动机器人路径规划问题展开研究。通过自研仿真平台验证,该方案在动态障碍物规避、路径平滑度等维度较传统A*算法提升显著,同时兼顾实时性要求。完整代码与训练日志已开源至GitHub,诚邀技术同仁共同探讨。一、核心痛点分析1.1传统算法局限性算法类型优势劣势Dijkstra理论最优性计算复杂度O(V²),
- 深度学习与传统算法在人脸识别领域的演进:从Eigenfaces到ArcFace
uncle_ll
人脸深度学习人脸人脸识别
一、传统人脸识别方法的发展与局限1.1Eigenfaces:主成分分析的经典实践算法原理Eigenfaces是基于主成分分析(PCA)的里程碑式方法。其核心思想是将人脸图像视为高维向量,通过协方差矩阵计算特征向量(即特征脸),将原始数据投影到由前k个最大特征值对应的特征向量张成的低维子空间。在FERET数据集上,Eigenfaces曾达到85%的识别准确率,证明了线性降维的有效性。优劣势对比✅优势
- 大模型的实践应用43-基于Qwen3(32B)+LangChain框架+MCP+RAG+传统算法的旅游行程规划系统
微学AI
大模型的实践应用深度学习实战(进阶)langchain算法旅游MCPQwen
大家好,我是微学AI,今天给大家介绍一下大模型的实践应用43-基于Qwen3(32B)+LangChain框架+MCP+RAG+传统算法的旅游行程规划系统。本报告将阐述基于大模型Qwen3(32B)、LangChain框架、MCP协议、RAG技术以及传统算法构建的智能旅游行程规划系统。该系统通过整合多种技术优势,实现了用户需求的精准分析、景点的智能推荐以及行程的优化生成,同时确保了实时数据调用的安
- 为什么转行大模型行业?一篇文章让你搞明白,深度解析大模型行业,非常详细!
大模型入门学习
人工智能学习大模型AI产品经理程序员AI大模型
引言2023年ChatGPT的爆发式发展,标志着AI大模型技术正式进入大众视野。这一技术不仅重塑了人工智能的边界,更催生了全新的职业赛道。从传统算法工程师到互联网从业者,越来越多的人开始将目光投向大模型领域。本文将深入探讨这一现象背后的核心动因,并结合行业现状、技术趋势与职业发展路径,为从业者提供系统性分析。一、行业变革:传统岗位萎缩与大模型崛起传统技术岗位的困境以推荐算法为例,随着移动互联网流量
- 第18节:6种传统方法实战项目(MNIST分类)
点我头像干啥
从零开始学习深度学习图像分类实战(pytorch)分类数据挖掘人工智能计算机视觉
为了探究不同传统算法在分类上的表现,本文实现了6种算法,这些脚本都遵循相同的模式:加载MNIST数据集划分训练集和测试集训练指定模型评估并输出结果要运行这些脚本,只需分别执行每个文件即可。通过比较不同算法的结果,可以了解它们在MNIST数据集上的相对性能表现。1.逻辑回归代码如下:fromsklearn.datasetsimportfetch_openmlfromsklearn.linear_mo
- 深入实践:从零开始掌握GPT的应用开发
一位小说男主
人工智能入门深度学习gpt人工智能神经网络
1.为什么选择GPT?GPT(GenerativePre-trainedTransformer)是当下最具影响力的语言生成模型之一,适用于生成文本、分析语言情感、翻译、多任务对话等多种场景。相比传统算法和模型,GPT有以下显著优势:强大的生成能力:基于预训练模型,无需大量数据即可生成高质量内容。适应多任务场景:通过设计提示(Prompts),灵活完成多种任务。无需深度开发:通过OpenAI等服务,
- 从存储仓库到智能中枢:AI时代NAS的进化革命
DeepSeek+NAS
人工智能winnasnas众乐影音安卓NAS
过去二十年,家用NAS(网络附属存储)设备始终徘徊在存储工具的定位,其核心功能停留在文件备份、影音共享等基础服务层面。即便某些厂商引入人脸识别功能,本质上仍是基于特征模板匹配的传统算法。当生成式AI突破技术奇点,大语言模型重构人机交互范式,NAS设备正站在智能化转型的关键节点。这个曾经沉睡在家庭网络角落的存储设备,即将蜕变为具备认知能力的家庭智能中枢。一、从数据仓库到智能知识库的质变传统NAS对文
- 新一代AI架构实践:数字大脑AI+智能调度MCP+领域执行APP的黄金金字塔体系
Julian.zhou
架构相关未来思考人工智能架构人工智能微服务
新一代AI架构实践:数字大脑+智能调度+领域执行的黄金金字塔体系一、架构本质的三层穿透性认知1.1核心范式转变(CPS理论升级)传统算法架构:数据驱动→特征工程→模型训练→业务应用新一代AI架构:物理规律建模→认知逻辑编排→领域原子执行1.2关键能力矩阵层级核心能力实现路径评估指标数字大脑AI层跨模态认知动态知识图谱元推理能力混合专家系统神经符号系统融合上下文理解准确率>92%智能调度MCP层服务
- OpenCV、YOLO与大模型的区别与关系
真相很简单
人工智能技术识别算法opencvYOLO人工智能大模型
OpenCV、YOLO和大模型的区别与关系1.OpenCV(OpenSourceComputerVisionLibrary)定位:开源的计算机视觉基础库。功能:提供传统的图像处理算法(如图像滤波、边缘检测、特征提取)和基础工具(如摄像头控制、视频处理)。特点:不依赖深度学习,基于传统算法(如Haar级联、SIFT特征)。轻量级,适合实时性要求高的场景(如摄像头实时处理)。应用场景:人脸检测、图像增
- 目标检测YOLO系列从入门到精通技术详解100篇-【目标检测】机器视觉(基础篇)(十)
格图素书
目标检测YOLO人工智能
目录几个高频面试题目摄像机如何获得彩色图像的?机器视觉发展历程知识储备机器视觉-图像处理图像处理图像处理过程传统算法预处理分割特征提取图像分析工具深度学习算法原理光学成像光学滤光片分辨率和像素的计算什么是像素?像素和分辨率的关系?像素密度怎么算?1什么是像素2像素和分辨率的关系3像素密度怎么算4像素原理3D机器视觉CMOS图像传感器01什么是CMOS图像传感器?02像素03光学尺寸/靶面尺寸04帧
- windows下源码安装golang
616050468
golang安装golang环境windows
系统: 64位win7, 开发环境:sublime text 2, go版本: 1.4.1
1. 安装前准备(gcc, gdb, git)
golang在64位系
- redis批量删除带空格的key
bylijinnan
redis
redis批量删除的通常做法:
redis-cli keys "blacklist*" | xargs redis-cli del
上面的命令在key的前后没有空格时是可以的,但有空格就不行了:
$redis-cli keys "blacklist*"
1) "blacklist:12:
[email protected]
- oracle正则表达式的用法
0624chenhong
oracle正则表达式
方括号表达示
方括号表达式
描述
[[:alnum:]]
字母和数字混合的字符
[[:alpha:]]
字母字符
[[:cntrl:]]
控制字符
[[:digit:]]
数字字符
[[:graph:]]
图像字符
[[:lower:]]
小写字母字符
[[:print:]]
打印字符
[[:punct:]]
标点符号字符
[[:space:]]
- 2048源码(核心算法有,缺少几个anctionbar,以后补上)
不懂事的小屁孩
2048
2048游戏基本上有四部分组成,
1:主activity,包含游戏块的16个方格,上面统计分数的模块
2:底下的gridview,监听上下左右的滑动,进行事件处理,
3:每一个卡片,里面的内容很简单,只有一个text,记录显示的数字
4:Actionbar,是游戏用重新开始,设置等功能(这个在底下可以下载的代码里面还没有实现)
写代码的流程
1:设计游戏的布局,基本是两块,上面是分
- jquery内部链式调用机理
换个号韩国红果果
JavaScriptjquery
只需要在调用该对象合适(比如下列的setStyles)的方法后让该方法返回该对象(通过this 因为一旦一个函数称为一个对象方法的话那么在这个方法内部this(结合下面的setStyles)指向这个对象)
function create(type){
var element=document.createElement(type);
//this=element;
- 你订酒店时的每一次点击 背后都是NoSQL和云计算
蓝儿唯美
NoSQL
全球最大的在线旅游公司Expedia旗下的酒店预订公司,它运营着89个网站,跨越68个国家,三年前开始实验公有云,以求让客户在预订网站上查询假期酒店时得到更快的信息获取体验。
云端本身是用于驱动网站的部分小功能的,如搜索框的自动推荐功能,还能保证处理Hotels.com服务的季节性需求高峰整体储能。
Hotels.com的首席技术官Thierry Bedos上个月在伦敦参加“2015 Clou
- java笔记1
a-john
java
1,面向对象程序设计(Object-oriented Propramming,OOP):java就是一种面向对象程序设计。
2,对象:我们将问题空间中的元素及其在解空间中的表示称为“对象”。简单来说,对象是某个类型的实例。比如狗是一个类型,哈士奇可以是狗的一个实例,也就是对象。
3,面向对象程序设计方式的特性:
3.1 万物皆为对象。
- C语言 sizeof和strlen之间的那些事 C/C++软件开发求职面试题 必备考点(一)
aijuans
C/C++求职面试必备考点
找工作在即,以后决定每天至少写一个知识点,主要是记录,逼迫自己动手、总结加深印象。当然如果能有一言半语让他人收益,后学幸运之至也。如有错误,还希望大家帮忙指出来。感激不尽。
后学保证每个写出来的结果都是自己在电脑上亲自跑过的,咱人笨,以前学的也半吊子。很多时候只能靠运行出来的结果再反过来
- 程序员写代码时就不要管需求了吗?
asia007
程序员不能一味跟需求走
编程也有2年了,刚开始不懂的什么都跟需求走,需求是怎样就用代码实现就行,也不管这个需求是否合理,是否为较好的用户体验。当然刚开始编程都会这样,但是如果有了2年以上的工作经验的程序员只知道一味写代码,而不在写的过程中思考一下这个需求是否合理,那么,我想这个程序员就只能一辈写敲敲代码了。
我的技术不是很好,但是就不代
- Activity的四种启动模式
百合不是茶
android栈模式启动Activity的标准模式启动栈顶模式启动单例模式启动
android界面的操作就是很多个activity之间的切换,启动模式决定启动的activity的生命周期 ;
启动模式xml中配置
<activity android:name=".MainActivity" android:launchMode="standard&quo
- Spring中@Autowired标签与@Resource标签的区别
bijian1013
javaspring@Resource@Autowired@Qualifier
Spring不但支持自己定义的@Autowired注解,还支持由JSR-250规范定义的几个注解,如:@Resource、 @PostConstruct及@PreDestroy。
1. @Autowired @Autowired是Spring 提供的,需导入 Package:org.springframewo
- Changes Between SOAP 1.1 and SOAP 1.2
sunjing
ChangesEnableSOAP 1.1SOAP 1.2
JAX-WS
SOAP Version 1.2 Part 0: Primer (Second Edition)
SOAP Version 1.2 Part 1: Messaging Framework (Second Edition)
SOAP Version 1.2 Part 2: Adjuncts (Second Edition)
Which style of WSDL
- 【Hadoop二】Hadoop常用命令
bit1129
hadoop
以Hadoop运行Hadoop自带的wordcount为例,
hadoop脚本位于/home/hadoop/hadoop-2.5.2/bin/hadoop,需要说明的是,这些命令的使用必须在Hadoop已经运行的情况下才能执行
Hadoop HDFS相关命令
hadoop fs -ls
列出HDFS文件系统的第一级文件和第一级
- java异常处理(初级)
白糖_
javaDAOspring虚拟机Ajax
从学习到现在从事java开发一年多了,个人觉得对java只了解皮毛,很多东西都是用到再去慢慢学习,编程真的是一项艺术,要完成一段好的代码,需要懂得很多。
最近项目经理让我负责一个组件开发,框架都由自己搭建,最让我头疼的是异常处理,我看了一些网上的源码,发现他们对异常的处理不是很重视,研究了很久都没有找到很好的解决方案。后来有幸看到一个200W美元的项目部分源码,通过他们对异常处理的解决方案,我终
- 记录整理-工作问题
braveCS
工作
1)那位同学还是CSV文件默认Excel打开看不到全部结果。以为是没写进去。同学甲说文件应该不分大小。后来log一下原来是有写进去。只是Excel有行数限制。那位同学进步好快啊。
2)今天同学说写文件的时候提示jvm的内存溢出。我马上反应说那就改一下jvm的内存大小。同学说改用分批处理了。果然想问题还是有局限性。改jvm内存大小只能暂时地解决问题,以后要是写更大的文件还是得改内存。想问题要长远啊
- org.apache.tools.zip实现文件的压缩和解压,支持中文
bylijinnan
apache
刚开始用java.util.Zip,发现不支持中文(网上有修改的方法,但比较麻烦)
后改用org.apache.tools.zip
org.apache.tools.zip的使用网上有更简单的例子
下面的程序根据实际需求,实现了压缩指定目录下指定文件的方法
import java.io.BufferedReader;
import java.io.BufferedWrit
- 读书笔记-4
chengxuyuancsdn
读书笔记
1、JSTL 核心标签库标签
2、避免SQL注入
3、字符串逆转方法
4、字符串比较compareTo
5、字符串替换replace
6、分拆字符串
1、JSTL 核心标签库标签共有13个,
学习资料:http://www.cnblogs.com/lihuiyy/archive/2012/02/24/2366806.html
功能上分为4类:
(1)表达式控制标签:out
- [物理与电子]半导体教材的一个小问题
comsci
问题
各种模拟电子和数字电子教材中都有这个词汇-空穴
书中对这个词汇的解释是; 当电子脱离共价键的束缚成为自由电子之后,共价键中就留下一个空位,这个空位叫做空穴
我现在回过头翻大学时候的教材,觉得这个
- Flashback Database --闪回数据库
daizj
oracle闪回数据库
Flashback 技术是以Undo segment中的内容为基础的, 因此受限于UNDO_RETENTON参数。要使用flashback 的特性,必须启用自动撤销管理表空间。
在Oracle 10g中, Flash back家族分为以下成员: Flashback Database, Flashback Drop,Flashback Query(分Flashback Query,Flashbac
- 简单排序:插入排序
dieslrae
插入排序
public void insertSort(int[] array){
int temp;
for(int i=1;i<array.length;i++){
temp = array[i];
for(int k=i-1;k>=0;k--)
- C语言学习六指针小示例、一维数组名含义,定义一个函数输出数组的内容
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int * p; //等价于 int *p 也等价于 int* p;
int i = 5;
char ch = 'A';
//p = 5; //error
//p = &ch; //error
//p = ch; //error
p = &i; //
- centos下php redis扩展的安装配置3种方法
dcj3sjt126com
redis
方法一
1.下载php redis扩展包 代码如下 复制代码
#wget http://redis.googlecode.com/files/redis-2.4.4.tar.gz
2 tar -zxvf 解压压缩包,cd /扩展包 (进入扩展包然后 运行phpize 一下是我环境中phpize的目录,/usr/local/php/bin/phpize (一定要
- 线程池(Executors)
shuizhaosi888
线程池
在java类库中,任务执行的主要抽象不是Thread,而是Executor,将任务的提交过程和执行过程解耦
public interface Executor {
void execute(Runnable command);
}
public class RunMain implements Executor{
@Override
pub
- openstack 快速安装笔记
haoningabc
openstack
前提是要配置好yum源
版本icehouse,操作系统redhat6.5
最简化安装,不要cinder和swift
三个节点
172 control节点keystone glance horizon
173 compute节点nova
173 network节点neutron
control
/etc/sysctl.conf
net.ipv4.ip_forward =
- 从c面向对象的实现理解c++的对象(二)
jimmee
C++面向对象虚函数
1. 类就可以看作一个struct,类的方法,可以理解为通过函数指针的方式实现的,类对象分配内存时,只分配成员变量的,函数指针并不需要分配额外的内存保存地址。
2. c++中类的构造函数,就是进行内存分配(malloc),调用构造函数
3. c++中类的析构函数,就时回收内存(free)
4. c++是基于栈和全局数据分配内存的,如果是一个方法内创建的对象,就直接在栈上分配内存了。
专门在
- 如何让那个一个div可以拖动
lingfeng520240
html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml
- 第10章 高级事件(中)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 计算两个经纬度之间的距离
roadrunners
计算纬度LBS经度距离
要解决这个问题的时候,到网上查了很多方案,最后计算出来的都与百度计算出来的有出入。下面这个公式计算出来的距离和百度计算出来的距离是一致的。
/**
*
* @param longitudeA
* 经度A点
* @param latitudeA
* 纬度A点
* @param longitudeB
*
- 最具争议的10个Java话题
tomcat_oracle
java
1、Java8已经到来。什么!? Java8 支持lambda。哇哦,RIP Scala! 随着Java8 的发布,出现很多关于新发布的Java8是否有潜力干掉Scala的争论,最终的结论是远远没有那么简单。Java8可能已经在Scala的lambda的包围中突围,但Java并非是函数式编程王位的真正觊觎者。
2、Java 9 即将到来
Oracle早在8月份就发布
- zoj 3826 Hierarchical Notation(模拟)
阿尔萨斯
rar
题目链接:zoj 3826 Hierarchical Notation
题目大意:给定一些结构体,结构体有value值和key值,Q次询问,输出每个key值对应的value值。
解题思路:思路很简单,写个类词法的递归函数,每次将key值映射成一个hash值,用map映射每个key的value起始终止位置,预处理完了查询就很简单了。 这题是最后10分钟出的,因为没有考虑value为{}的情