- RK3568笔记九十三:基于RKNN Lite的YOLOv5目标检测
殷忆枫
RK3568学习笔记笔记YOLO
若该文为原创文章,转载请注明原文出处。一、介绍Yolov5是一种目标检测算法,属于单阶段目标检测方法,是在COCO数据集上预训练的物体检测架构和模型系列,它代表了Ultralytics对未来视觉AI方法的开源研究,其中包含了经过数千小时的研究和开发而形成的经验教训和最佳实践。最新的YOLOv5v7.0有YOLOv5n、YOLOv5s、YOLOv5m、YOLOv5l、YOLOv5x等,除了目标检测,
- 深度学习方法生成抓取位姿与6D姿态估计的完整实现
ZPC8210
ROS深度学习人工智能
如何将GraspNet等深度学习模型与6D姿态估计集成到ROS2和MoveIt中,实现高精度的机器人抓取系统。1.系统架构text[RGB-D传感器]→[物体检测与6D姿态估计]→[GraspNet抓取位姿生成]→[MoveIt运动规划]→[执行抓取]2.环境配置2.1安装依赖bash#安装PyTorch(根据CUDA版本选择)pip3installtorchtorchvisiontorchaud
- ROS2 通过相机确定物品坐标位置
要实现通过相机确定物品坐标位置,通常需要相机标定、物体检测和坐标转换几个步骤。下面我将提供一个完整的解决方案,包括相机标定、物体检测和3D坐标估计。1.系统架构相机标定-获取相机内参和畸变系数物体检测-使用OpenCV或深度学习模型检测物品坐标转换-将2D图像坐标转换为3D世界坐标ROS2集成-将上述功能集成到ROS2节点中2.实现步骤2.1创建功能包bashros2pkgcreateobject
- 【零基础学AI】第31讲:目标检测 - YOLO算法
1989
0基础学AI人工智能目标检测YOLOrnnlstmtensorflow
本节课你将学到YOLO算法的核心思想和工作原理如何使用YOLO进行物体检测构建一个简单的物体检测系统开始之前环境要求Python3.8+需要安装的包:opencv-python,numpy,matplotlib硬件要求:推荐使用GPU(非必须)前置知识基本Python编程能力了解卷积神经网络(CNN)的基本概念(第24讲内容)核心概念什么是目标检测?目标检测就像教计算机"看"图片中的物体。它不仅要
- BEV开山之作Lift-Splat-Shot (LSS) 深度详解
shuaishuaideyuzi
3D视觉入门人工智能pythonpytorch3d计算机视觉
在自动驾驶感知系统中,将多视角图像转换为鸟瞰图(BEV)是一个关键步骤。Lift-Splat-Shot(LSS)是一种高效的视角转换方法,能够将透视视图特征转换为BEV空间,从而实现更准确的3D物体检测。本文将详细解析LSS的工作原理、技术细节及其应用场景。一、LSS概述LSS(Lift-Splat-Shot)是由PhilippHenzler等人于2021年提出的一种用于自动驾驶感知系统的视角转换
- NanoDet 深度学习物料自动分类系统
YOLO实战营
深度学习分类人工智能数据挖掘NanoDet
引言随着工业自动化和物料管理的不断发展,物料的自动分类在仓储、物流、生产线等场景中的应用越来越广泛。传统的物料分类方式往往依赖人工操作,效率低下且容易出错,而基于深度学习的自动分类系统能够大大提高工作效率、降低错误率并实现高效管理。在众多深度学习技术中,物体检测算法被广泛应用于自动分类系统。NanoDet作为一款轻量级的目标检测算法,凭借其出色的速度与准确性,成为解决物料自动分类问题的一种理想选择
- D-FINE使用pth权重批量推理可视化图片
悠悠海风
代码调试深度学习人工智能python目标检测计算机视觉
关于D-FINE相关的内容可参考下面这篇博客:论文解读:ICLR2025|D-FINE_d-fine:redefineregressiontaskindetrsasfine--CSDN博客文章浏览阅读949次,点赞18次,收藏28次。D-FINE是一款功能强大的实时物体检测器,它将DETRs中的边界框回归任务重新定义为细粒度分布细化(FDR),并引入了全局最优定位自蒸馏(GO-LSD),在不引入额
- 基于OpenCv的运动物体检测算法
Liu_LongPo
计算机视觉OpenCv运动物体检测
基于一个实现的基于OpenCv的运动物体检测算法,可以用于检测行人或者其他运动物体。#include#include#include#includeintmain(intargc,char**argv){//声明IplImage指针IplImage*pFrame=NULL;IplImage*pFrImg=NULL;IplImage*pBkImg=NULL;CvMat*pFrameMat=NULL;
- C#图像处理-OpenCVSharp教程(三十五) OpenCVSharp运动物体检测(一)
Color Space
OpenCVSharpC#OpenCVC#图像处理
本文作者ColorSpace,文章未经作者允许禁止转载!本文将介绍OpenCVSharp运动物体检测(一)代码演示:///图片背景差法检测运动物体MatbgImg=Cv2.ImRead("1.bmp");MatfgImg=Cv2.ImRead("55.bmp");Cv2.ImShow("bg",bgImg);Cv2.ImShow("fg",fgImg);Matgray=newMat();Matgr
- 一[3.0]、 yolov8 工作原理
他人是一面镜子,保持谦虚的态度
车道检测研究YOLO
目录YOLOv8简介什么是YOLOv8?yaml配置文件解析YOLOv8架构图Yolov8有什么新功能?YOLO模型彻底改变了计算机视觉领域。识别物体是计算机视觉中的一项关键任务,可应用于机器人、医学成像、监控系统和自动驾驶汽车等多个领域。YOLO模型的最新版本YOLOv8是一种先进的实时物体检测框架,引起了研究界的关注。在所有流行的物体识别机器学习模型(如FasterR-CNN、SSD和Reti
- YOLOv12:以注意力为中心的物体检测
发呆小天才O.o
计算机视觉深度学习计算机视觉目标检测YOLOv12
1.概述实时目标检测已成为许多实际应用的关键,而Ultralytics的YOLO(YouOnlyLookOnce)系列一直是最先进的模型系列,在速度和准确率之间实现了稳健的平衡。注意力机制的低效性阻碍了其在YOLO等高速系统中的应用。YOLOv12旨在通过将注意力机制集成到YOLO框架中来改变这一现状。由于注意力机制效率低下,且计算复杂度高达平方级,内存访问操作效率低下,因此大多数目标检测架构传统
- YOLO chp01-
speop
YOLO
学习YOLO的正确姿势:从入门到"真香"的奇妙之旅YOLO系列模型的硬核表现:YOLOv1最先提出单阶段检测+GridCell机制,在物体检测速度层面实现了质的飞跃YOLOv5在TeslaT4上跑出140FPSYOLOv8的Latency-Accuracy曲线表现卓越YOLO模块化定制;#你的自定义YOLO可能是这样的classMySuperYOLO(nn.Module):def__init__(
- COCO-Stuff数据集:基于YOLOv5的多类别目标检测与分割实现
YOLO实战营
深度学习YOLO实战项目YOLO目标检测人工智能无人机计算机视觉数据挖掘ui
一、引言随着计算机视觉领域的不断发展,目标检测和语义分割已经成为深度学习中的两个关键任务。COCO-Stuff是一个包含多达172个类别的大型数据集,用于训练和评估计算机视觉算法。与传统的COCO数据集不同,COCO-Stuff不仅包含常见的物体检测任务,还增加了诸如“天空”、“树木”和“路面”等场景理解任务。通过对这个数据集的处理与利用,我们可以构建一个更加丰富的目标检测与语义分割系统。本博客将
- Python----目标检测(YOLO简介)
蹦蹦跳跳真可爱589
目标检测Python目标检测YOLO目标跟踪人工智能计算机视觉python
一、YOLO简介[YOLO](YouOnlyLookOnce)是一种流行的物体检测和图像分割模型,由华盛顿大学的约瑟夫-雷德蒙(JosephRedmon)和阿里-法哈迪(AliFarhadi)开发,YOLO于2015年推出,因其高速度和高精确度而迅速受到欢迎。在计算机视觉(ComputerVision)领域,目标检测(ObjectDetection)一直是最为基础且至关重要的研究方向之一。随着深度
- 深度学习在计算机视觉中的应用:物体检测技术
小鹿嘻嘻
深度学习计算机视觉物体检测卷积神经网络R-CNN变体
背景简介随着机器学习(ML)、深度学习(DL)以及变换器神经网络等技术的快速发展,计算机视觉领域取得了显著进步。深度学习通过利用卷积神经网络(CNN)等模型,使计算机能够从图像中直接提取重要信息,从而在物体检测、场景理解等领域实现了突破性进展。本文将深入探讨深度学习在计算机视觉任务中的应用,并重点分析物体检测技术。深度学习与计算机视觉的结合深度学习(DL)模型具有多个处理层,能够学习和表示数据在不
- 【仿生系统】qwen的仿生机器人解决方案
DFminer
机器人
收到完整需求后,我将从系统架构设计、算法实现路径、训练方法三个维度为您构建完整的仿生机器人解决方案。以下是分阶段实施方案:一、核心系统架构设计(模块化可进化架构)1.多模态感知引擎-视觉子系统:YOLOv8+SAM组合实现实时物体检测+场景语义分割-听觉子系统:Whisper+SpeakerEmbedding+情感识别三重处理-语言理解:基于LLaMA3的增量式语义解析(IncrementalPa
- YOLOv9:实时物体检测的新标杆
程栋里
YOLOv9:实时物体检测的新标杆【下载地址】YOLOv9概述-实时物体检测算法YOLOv9概述-实时物体检测算法项目地址:https://gitcode.com/Open-source-documentation-tutorial/24e1b项目介绍YOLOv9是YOLO(YouOnlyLookOnce)系列中的最新成员,专为实时物体检测而设计。YOLO系列以其高效和准确的物体检测能力而闻名,而
- 基于亚博K210开发板——物体检测测试
追兮兮
K210K210
开发板亚博K210开发板实验目的本次测试主要学习K210如何物体检测,然后通过LCD显示屏实时框出检测物体然后以不同颜色标记名称。实验元件OV2640摄像头/OV9655摄像头/GC2145摄像头、LCD显示屏硬件连接K210开发板出厂默认已经安装好摄像头和显示器,只需要使用Type-C数据线连接K210开发板与电脑即可。实验原理KendryteK210具备机器视觉能力,是零门槛机器视觉嵌入式解决
- 英伟达最新发布!超越其它所有SOTA的3D目标检测
3D视觉工坊
3D视觉从入门到精通3d目标检测人工智能计算机视觉
作者:王林|来源:3DCV在公众号「3DCV」后台,回复「原论文」可获取论文pdf添加微信:dddvision,备注:自动驾驶,拉你入群。文末附行业细分群1、导读现有的3D物体检测方法通常需要使用完全注释的数据进行训练,而使用预训练的语义特征可以带来一些优势。然而,目前还没有利用扩散特征进行3D感知任务的研究。因此,我们提出了一种新的框架,通过视图合成任务来增强预训练的2D扩散模型的3D感知能力。
- YOLOv5与YOLOv4的区别与优缺点分析
AI天才研究院
AI大模型企业级应用开发实战AIAgent应用开发计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
YOLOv5与YOLOv4的区别与优缺点分析作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming/TextGenWebUILLM1.背景介绍1.1问题的由来在深度学习和计算机视觉领域,物体检测是研究的核心之一。从早期基于全连接层的算法如R-CNN系列到如今流行的轻量级检测器如SSD、FasterR-CNN以及单阶段检测器如YOLO系列,算法一直在追求更高
- Python与YOLO:自动驾驶中的实时物体检测
Echo_Wish
Python!实战!pythonYOLO自动驾驶
Python与YOLO:自动驾驶中的实时物体检测引言:从物体检测到智能驾驶说到自动驾驶,很多人脑海中首先想到的可能是智能汽车,它们能够自主地行驶,无需人类干预。这一切的背后,离不开一项至关重要的技术——实时物体检测。在自动驾驶中,车辆需要通过摄像头、雷达等传感器获取周围环境的数据,而如何从这些庞大的数据中快速、准确地识别出行人、车辆、障碍物等是至关重要的。这里,我们将聚焦于如何利用**Python
- AI Python 教程
Empty-Filled
人工智能python开发语言
AIPython教程为什么使用Python学习AI?AI之Python前提AIPython教程人工智能AI之Python-机器学习监督学习回归算法分类算法非监督学习聚类算法数据降维增强学习AI之Python-深度学习深度学习基础深度学习架构AI之Python-自然语言处理文本处理和表示文本处理文本表示词汇语义学AI之Python-计算机视觉图像处理和转换图像识别架构物体检测架构两步检测器单步检测器
- 树莓派智能摄像头实战指南:基于TensorFlow Lite的端到端AI部署
Tech Synapse
人工智能tensorflowpythonMobileNetV2TensorFlowLite
引言:嵌入式AI的革新力量在物联网与人工智能深度融合的今天,树莓派这一信用卡大小的计算机正在成为边缘计算的核心载体。本文将手把手教你打造一款基于TensorFlowLite的低功耗智能监控设备,通过MobileNetV2模型实现实时物体检测,结合运动检测算法构建双保险监控体系。我们将深入探索模型轻量化部署、硬件加速优化和功耗管理策略,为嵌入式AI开发提供完整技术路线图。一、智能监控系统的技术架构1
- 目标检测的图像特征提取
勇往直前的流浪刀客
CV图像特征提取
目标检测的图像特征提取之(一)HOG特征1、HOG特征:方向梯度直方图(HistogramofOrientedGradient,HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。它通过计算和统计图像局部区域的梯度方向直方图来构成特征。Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功。需要提醒的是,HOG+SVM进行行人检测的方法是法国研究
- 树莓派智能摄像头实战指南:基于TensorFlow Lite的端到端AI部署
大G哥
人工智能tensorflowpython深度学习机器学习
引言:嵌入式AI的革新力量在物联网与人工智能深度融合的今天,树莓派这一信用卡大小的计算机正在成为边缘计算的核心载体。本文将手把手教你打造一款基于TensorFlowLite的低功耗智能监控设备,通过MobileNetV2模型实现实时物体检测,结合运动检测算法构建双保险监控体系。我们将深入探索模型轻量化部署、硬件加速优化和功耗管理策略,为嵌入式AI开发提供完整技术路线图。一、智能监控系统的技术架构1
- YOLOv5的gpu训练环境安装(windows系统,anaconda虚拟python环境)
wifi11
windowspythonpytorch
本人在用YOLOv5进行物体检测时,使用使用detect.py文件时无法调用gpu,下载了pytorch的gpu版本后代码运行会报错,错误信息说是CUDA环境不正确,为此整理了一下CUDA和pytorch环境的安装。(由报错可知,detect.py选项无法运行并不是因为gpu环境未配置好,而是不能使用gpu,所以下载好gpu版本后,pythondetect.py--weightsyolov5s.p
- 【计算机视觉】深度解析MediaPipe:谷歌跨平台多媒体机器学习框架实战指南
白熊188
计算机视觉计算机视觉机器学习人工智能
深度解析MediaPipe:谷歌跨平台多媒体机器学习框架实战指南技术架构与设计哲学核心设计理念系统架构概览核心功能与预构建解决方案1.人脸检测2.手势识别3.姿势估计4.物体检测与跟踪实战部署指南环境配置基础环境准备获取源码构建第一个示例(手部追踪)桌面端运行Android端部署自定义计算图开发关键技术深度解析1.高效同步机制2.GPU加速实现3.模型优化技术常见问题与解决方案1.GPU兼容性问题
- 突破YOLOv11训练:用幽默的方式玩转自定义数据集与物体检测
星际编程喵
Python探索之旅YOLO人工智能目标跟踪计算机视觉python机器学习
前言你是否曾在训练深度学习模型时,望着屏幕上那一堆堆的错误信息,差点觉得自己的大脑要冒烟?如果你也曾体验过这种“技术折磨”,恭喜,你找对地方了!今天,我们将带你踏入YOLOv11的神奇世界,用幽默的方式教你如何训练物体检测模型,处理自定义数据集。放心,这不仅仅是枯燥的代码,我们还会插入一些有趣的故事,让你在繁琐的操作中不至于崩溃,还能带着笑容一路走下去!简介YOLO(YouOnlyLookOnce
- 旋转目标检测:Oriented Object Detection in Aerial Images with Box Boundary-Aware Vectors【方法解析】
沉浸式AI
《AI与SLAM论文解析》目标检测人工智能计算机视觉算法论文解读旋转目标检测
中文标题:基于盒边界感知向量的航空图像定向目标检测目录摘要1.引言2.相关工作2.1定向物体检测2.2基于关键点的物体检测基线方法3.方法3.1架构3.2热图地面真值训练损失3.3偏移3.4框参数3.5方向4.实验4.1数据集DOTAHRSC20164.2实现细节4.3测试细节4.4与最先进方法的比较DOTAHRSC20164.5消融研究4.6与基线方法的比较5.结论摘要航拍图像中的定向物体检测是
- 【图像轮廓特征查找】图像处理(OpenCV) -part8
绝顶大聪明
图像处理opencv人工智能
17图像轮廓特征查找图像轮廓特征查找其实就是他的外接轮廓。应用:图像分割形状分析物体检测与识别根据轮廓点进行,所以要先找到轮廓。先灰度化、二值化。目标物体白色,非目标物体黑色,选择合适的儿值化方式。有了轮廓点就可以找到最上、最下、最左、最右的四个坐标,X_{min}、X_{max}、Y_{min}、Y_{max}。就可以绘制出矩形。17.1外接矩形boundingRect(轮廓点)形状的外接矩形有
- java责任链模式
3213213333332132
java责任链模式村民告县长
责任链模式,通常就是一个请求从最低级开始往上层层的请求,当在某一层满足条件时,请求将被处理,当请求到最高层仍未满足时,则请求不会被处理。
就是一个请求在这个链条的责任范围内,会被相应的处理,如果超出链条的责任范围外,请求不会被相应的处理。
下面代码模拟这样的效果:
创建一个政府抽象类,方便所有的具体政府部门继承它。
package 责任链模式;
/**
*
- linux、mysql、nginx、tomcat 性能参数优化
ronin47
一、linux 系统内核参数
/etc/sysctl.conf文件常用参数 net.core.netdev_max_backlog = 32768 #允许送到队列的数据包的最大数目
net.core.rmem_max = 8388608 #SOCKET读缓存区大小
net.core.wmem_max = 8388608 #SOCKET写缓存区大
- php命令行界面
dcj3sjt126com
PHPcli
常用选项
php -v
php -i PHP安装的有关信息
php -h 访问帮助文件
php -m 列出编译到当前PHP安装的所有模块
执行一段代码
php -r 'echo "hello, world!";'
php -r 'echo "Hello, World!\n";'
php -r '$ts = filemtime("
- Filter&Session
171815164
session
Filter
HttpServletRequest requ = (HttpServletRequest) req;
HttpSession session = requ.getSession();
if (session.getAttribute("admin") == null) {
PrintWriter out = res.ge
- 连接池与Spring,Hibernate结合
g21121
Hibernate
前几篇关于Java连接池的介绍都是基于Java应用的,而我们常用的场景是与Spring和ORM框架结合,下面就利用实例学习一下这方面的配置。
1.下载相关内容: &nb
- [简单]mybatis判断数字类型
53873039oycg
mybatis
昨天同事反馈mybatis保存不了int类型的属性,一直报错,错误信息如下:
Caused by: java.lang.NumberFormatException: For input string: "null"
at sun.mis
- 项目启动时或者启动后ava.lang.OutOfMemoryError: PermGen space
程序员是怎么炼成的
eclipsejvmtomcatcatalina.sheclipse.ini
在启动比较大的项目时,因为存在大量的jsp页面,所以在编译的时候会生成很多的.class文件,.class文件是都会被加载到jvm的方法区中,如果要加载的class文件很多,就会出现方法区溢出异常 java.lang.OutOfMemoryError: PermGen space.
解决办法是点击eclipse里的tomcat,在
- 我的crm小结
aijuans
crm
各种原因吧,crm今天才完了。主要是接触了几个新技术:
Struts2、poi、ibatis这几个都是以前的项目中用过的。
Jsf、tapestry是这次新接触的,都是界面层的框架,用起来也不难。思路和struts不太一样,传说比较简单方便。不过个人感觉还是struts用着顺手啊,当然springmvc也很顺手,不知道是因为习惯还是什么。jsf和tapestry应用的时候需要知道他们的标签、主
- spring里配置使用hibernate的二级缓存几步
antonyup_2006
javaspringHibernatexmlcache
.在spring的配置文件中 applicationContent.xml,hibernate部分加入
xml 代码
<prop key="hibernate.cache.provider_class">org.hibernate.cache.EhCacheProvider</prop>
<prop key="hi
- JAVA基础面试题
百合不是茶
抽象实现接口String类接口继承抽象类继承实体类自定义异常
/* * 栈(stack):主要保存基本类型(或者叫内置类型)(char、byte、short、 *int、long、 float、double、boolean)和对象的引用,数据可以共享,速度仅次于 * 寄存器(register),快于堆。堆(heap):用于存储对象。 */ &
- 让sqlmap文件 "继承" 起来
bijian1013
javaibatissqlmap
多个项目中使用ibatis , 和数据库表对应的 sqlmap文件(增删改查等基本语句),dao, pojo 都是由工具自动生成的, 现在将这些自动生成的文件放在一个单独的工程中,其它项目工程中通过jar包来引用 ,并通过"继承"为基础的sqlmap文件,dao,pojo 添加新的方法来满足项
- 精通Oracle10编程SQL(13)开发触发器
bijian1013
oracle数据库plsql
/*
*开发触发器
*/
--得到日期是周几
select to_char(sysdate+4,'DY','nls_date_language=AMERICAN') from dual;
select to_char(sysdate,'DY','nls_date_language=AMERICAN') from dual;
--建立BEFORE语句触发器
CREATE O
- 【EhCache三】EhCache查询
bit1129
ehcache
本文介绍EhCache查询缓存中数据,EhCache提供了类似Hibernate的查询API,可以按照给定的条件进行查询。
要对EhCache进行查询,需要在ehcache.xml中设定要查询的属性
数据准备
@Before
public void setUp() {
//加载EhCache配置文件
Inpu
- CXF框架入门实例
白糖_
springWeb框架webserviceservlet
CXF是apache旗下的开源框架,由Celtix + XFire这两门经典的框架合成,是一套非常流行的web service框架。
它提供了JAX-WS的全面支持,并且可以根据实际项目的需要,采用代码优先(Code First)或者 WSDL 优先(WSDL First)来轻松地实现 Web Services 的发布和使用,同时它能与spring进行完美结合。
在apache cxf官网提供
- angular.equals
boyitech
AngularJSAngularJS APIAnguarJS 中文APIangular.equals
angular.equals
描述:
比较两个值或者两个对象是不是 相等。还支持值的类型,正则表达式和数组的比较。 两个值或对象被认为是 相等的前提条件是以下的情况至少能满足一项:
两个值或者对象能通过=== (恒等) 的比较
两个值或者对象是同样类型,并且他们的属性都能通过angular
- java-腾讯暑期实习生-输入一个数组A[1,2,...n],求输入B,使得数组B中的第i个数字B[i]=A[0]*A[1]*...*A[i-1]*A[i+1]
bylijinnan
java
这道题的具体思路请参看 何海涛的微博:http://weibo.com/zhedahht
import java.math.BigInteger;
import java.util.Arrays;
public class CreateBFromATencent {
/**
* 题目:输入一个数组A[1,2,...n],求输入B,使得数组B中的第i个数字B[i]=A
- FastDFS 的安装和配置 修订版
Chen.H
linuxfastDFS分布式文件系统
FastDFS Home:http://code.google.com/p/fastdfs/
1. 安装
http://code.google.com/p/fastdfs/wiki/Setup http://hi.baidu.com/leolance/blog/item/3c273327978ae55f93580703.html
安装libevent (对libevent的版本要求为1.4.
- [强人工智能]拓扑扫描与自适应构造器
comsci
人工智能
当我们面对一个有限拓扑网络的时候,在对已知的拓扑结构进行分析之后,发现在连通点之后,还存在若干个子网络,且这些网络的结构是未知的,数据库中并未存在这些网络的拓扑结构数据....这个时候,我们该怎么办呢?
那么,现在我们必须设计新的模块和代码包来处理上面的问题
- oracle merge into的用法
daizj
oraclesqlmerget into
Oracle中merge into的使用
http://blog.csdn.net/yuzhic/article/details/1896878
http://blog.csdn.net/macle2010/article/details/5980965
该命令使用一条语句从一个或者多个数据源中完成对表的更新和插入数据. ORACLE 9i 中,使用此命令必须同时指定UPDATE 和INSE
- 不适合使用Hadoop的场景
datamachine
hadoop
转自:http://dev.yesky.com/296/35381296.shtml。
Hadoop通常被认定是能够帮助你解决所有问题的唯一方案。 当人们提到“大数据”或是“数据分析”等相关问题的时候,会听到脱口而出的回答:Hadoop! 实际上Hadoop被设计和建造出来,是用来解决一系列特定问题的。对某些问题来说,Hadoop至多算是一个不好的选择,对另一些问题来说,选择Ha
- YII findAll的用法
dcj3sjt126com
yii
看文档比较糊涂,其实挺简单的:
$predictions=Prediction::model()->findAll("uid=:uid",array(":uid"=>10));
第一个参数是选择条件:”uid=10″。其中:uid是一个占位符,在后面的array(“:uid”=>10)对齐进行了赋值;
更完善的查询需要
- vim 常用 NERDTree 快捷键
dcj3sjt126com
vim
下面给大家整理了一些vim NERDTree的常用快捷键了,这里几乎包括了所有的快捷键了,希望文章对各位会带来帮助。
切换工作台和目录
ctrl + w + h 光标 focus 左侧树形目录ctrl + w + l 光标 focus 右侧文件显示窗口ctrl + w + w 光标自动在左右侧窗口切换ctrl + w + r 移动当前窗口的布局位置
o 在已有窗口中打开文件、目录或书签,并跳
- Java把目录下的文件打印出来
蕃薯耀
列出目录下的文件文件夹下面的文件目录下的文件
Java把目录下的文件打印出来
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年7月11日 11:02:
- linux远程桌面----VNCServer与rdesktop
hanqunfeng
Desktop
windows远程桌面到linux,需要在linux上安装vncserver,并开启vnc服务,同时需要在windows下使用vnc-viewer访问Linux。vncserver同时支持linux远程桌面到linux。
linux远程桌面到windows,需要在linux上安装rdesktop,同时开启windows的远程桌面访问。
下面分别介绍,以windo
- guava中的join和split功能
jackyrong
java
guava库中,包含了很好的join和split的功能,例子如下:
1) 将LIST转换为使用字符串连接的字符串
List<String> names = Lists.newArrayList("John", "Jane", "Adam", "Tom");
- Web开发技术十年发展历程
lampcy
androidWeb浏览器html5
回顾web开发技术这十年发展历程:
Ajax
03年的时候我上六年级,那时候网吧刚在小县城的角落萌生。传奇,大话西游第一代网游一时风靡。我抱着试一试的心态给了网吧老板两块钱想申请个号玩玩,然后接下来的一个小时我一直在,注,册,账,号。
彼时网吧用的512k的带宽,注册的时候,填了一堆信息,提交,页面跳转,嘣,”您填写的信息有误,请重填”。然后跳转回注册页面,以此循环。我现在时常想,如果当时a
- 架构师之mima-----------------mina的非NIO控制IOBuffer(说得比较好)
nannan408
buffer
1.前言。
如题。
2.代码。
IoService
IoService是一个接口,有两种实现:IoAcceptor和IoConnector;其中IoAcceptor是针对Server端的实现,IoConnector是针对Client端的实现;IoService的职责包括:
1、监听器管理
2、IoHandler
3、IoSession
- ORA-00054:resource busy and acquire with NOWAIT specified
Everyday都不同
oraclesessionLock
[Oracle]
今天对一个数据量很大的表进行操作时,出现如题所示的异常。此时表明数据库的事务处于“忙”的状态,而且被lock了,所以必须先关闭占用的session。
step1,查看被lock的session:
select t2.username, t2.sid, t2.serial#, t2.logon_time
from v$locked_obj
- javascript学习笔记
tntxia
JavaScript
javascript里面有6种基本类型的值:number、string、boolean、object、function和undefined。number:就是数字值,包括整数、小数、NaN、正负无穷。string:字符串类型、单双引号引起来的内容。boolean:true、false object:表示所有的javascript对象,不用多说function:我们熟悉的方法,也就是
- Java enum的用法详解
xieke90
enum枚举
Java中枚举实现的分析:
示例:
public static enum SEVERITY{
INFO,WARN,ERROR
}
enum很像特殊的class,实际上enum声明定义的类型就是一个类。 而这些类都是类库中Enum类的子类 (java.l